## **General Specifications** # ROTA*MASS* Total Insight Coriolis Mass Flow and Density Meter Intense GS 01U10B05-00EN-R #### Scope of application - Precise flow rate measurement of fluids and gases, multi-phase fluids and fluids with specific gas content using the Coriolis principle. - Direct measurement of mass flow and density independent of the fluid's physical properties, such as density, viscosity and homogeneity - Concentration measurement of solutions, suspensions and emulsions - Fluid temperatures of -70 150 °C (-94 302 °F) - Process pressures up to 260 bar - ASME process connections, up to two nominal diameters per device meter size - Connection to common process control systems, such as via HART, Modbus or PROFIBUS PA - Hazardous area approvals: IECEx, ATEX, FM (USA/Canada), NEPSI, INMETRO, PESO, EAC, Taiwan Safety Label, Korea Ex, Japan Ex - Safety-related applications: PED per AD 2000 Code, SIL 2, secondary containment up to 120 bar - Marine type approval: DNV GL #### Advantages and benefits - Inline measurement of several process variables, such as mass, density and temperature - Advanced functions like Net Oil Computing, Batching function and Viscosity function to avoid external dedicated flow computer. - Adapterless installation due to multi-size flange concept - No straight pipe runs at inlet or outlet required - Fast and uncomplicated commissioning and operation of the flow meter - Maintenance-free operation - Functions that can be activated subsequently (Features on Demand) - Total Health Check (diagnostic function): Selfmonitoring of the entire flow meter, including accuracy - Maximum accuracy due to calibration facility accredited according to ISO/IEC 17025 (for option K5) - Self-draining installation - Vibration-resistant due to counterbalanced double tube measurement system and box-in-box design ### **Table of contents** | 1 | Introduction | 1 | . 5 | |---|---------------------|----------------------------------------------------------|------| | | 1.1 Applica | able documents | . 5 | | | 1.2 Produc | ct overview | . 6 | | 2 | Measuring p | principle and flow meter design | . 7 | | | 2.1 Measu | uring principle | . 7 | | | 2.2 Flow n | neter | . 9 | | 3 | Application | and measuring ranges | . 13 | | | | ured quantities | | | | | uring range overview | | | | | flow | | | | | e flow | | | | | ure loss | | | | | ty | | | | | erature | | | 4 | • | | | | 4 | - | | | | | | iew | | | | • | point stability of the mass flow | | | | 4.3 Mass f<br>4.3.1 | flow accuracy | | | | 4.3.1 | Sample calculation for liquids | | | | _ | acy of density | | | | 4.4.1 | For liquids | | | | 4.4.2 | For gases | | | | 4.5 Accura | acy of mass flow and density according to the model code | | | | 4.5.1 | For liquids | | | | 4.5.2 | For gases | . 22 | | | 4.6 Volum | e flow accuracy | . 23 | | | 4.6.1 | For liquids | . 23 | | | 4.6.2 | For gases | . 23 | | | 4.7 Accura | acy of temperature | . 23 | | | 4.8 Repea | atability | . 24 | | | | ation conditions | | | | 4.9.1 | Mass flow calibration and density adjustment | | | | 4.9.2 | Density calibration | | | | | ss pressure effect | | | | 4.11 Proces | ss fluid temperature effect | . 26 | | 5 | Operating co | onditions | . 27 | | | 5.1 Location | on and position of installation | | | | 5.1.1 | Sensor installation position | | | | | ation instructions | | | | | ss conditions | | | | 5.3.1 | Process fluid temperature range | | | | 5.3.2 | Density | | | | 5.3.3 | Pressure | . 30 | | | | 5.3.4 | Mass flow | 31 | |----|------|-----------|-------------------------------------------------|----| | | | 5.3.5 | Effect of temperature on accuracy | 31 | | | | 5.3.6 | Secondary containment | 31 | | | 5.4 | Ambien | t conditions | 32 | | | | 5.4.1 | Allowed ambient temperature for sensor | 33 | | | | 5.4.2 | Temperature specification in hazardous areas | 35 | | 6 | Mech | nanical s | pecification | 38 | | | 6.1 | Design. | | 38 | | | 6.2 | Materia | l | 39 | | | | 6.2.1 | Material wetted parts | 39 | | | | 6.2.2 | Non-wetted parts | 39 | | | 6.3 | Process | s connections, dimensions and weights of sensor | 40 | | | 6.4 | Transm | itter dimensions and weights | 44 | | 7 | Tran | smitter s | specification | 46 | | | 7.1 | | and Modbus | | | | | 7.1.1 | Inputs and outputs | | | | 7.2 | PROFIE | BUS PA | 58 | | | | 7.2.1 | Overview of functional scope | | | | | 7.2.2 | Inputs and outputs | | | | 7.3 | Powers | supply | 61 | | | 7.4 | | pecification | 61 | | 8 | Adva | anced fu | nctions and Features on Demand (FOD) | 62 | | • | 8.1 | | stration and petroleum measurement | | | | 8.2 | | g function | | | | 8.3 | | ty function | 65 | | | 8.4 | | ealth Check | 66 | | | 8.5 | | ement of heat quantity | 66 | | | 8.6 | | es on Demand (FOD) | 67 | | _ | | | | | | 9 | | | • | 68 | | 10 | | _ | ormation | 78 | | | 10.1 | | w model code Intense 34 | 78 | | | 10.2 | | w model code Intense 36 | 82 | | | 10.3 | | w model code Intense 38 | 86 | | | 10.4 | Overvie | w options | 90 | | | 10.5 | Model o | code | 95 | | | | 10.5.1 | Transmitter | 95 | | | | 10.5.2 | Sensor | 95 | | | | 10.5.3 | Meter size | 95 | | | | 10.5.4 | Material wetted parts | 96 | | | | 10.5.5 | Process connection size | 96 | | | | 10.5.6 | Process connection type | 96 | | | | 10.5.7 | Sensor housing material | 97 | | | | 10.5.8 | Process fluid temperature range | 97 | | | | 10.5.9 | Mass flow and density accuracy | | | | | 10.5.10 | Design and housing | 98 | #### Table of contents | | 10.5.11 | Ex approval | 99 | |------|---------|-----------------------------------------------|-----| | | 10.5.12 | Cable entries | 99 | | | 10.5.13 | Communication type and I/O | 100 | | | 10.5.14 | Display | 102 | | 10.6 | Options | | 103 | | | 10.6.1 | Connecting cable type and length | 104 | | | 10.6.2 | Additional nameplate information | 104 | | | 10.6.3 | Presetting of customer parameters | 104 | | | 10.6.4 | Concentration and petroleum measurement | 105 | | | 10.6.5 | Batching function | 105 | | | 10.6.6 | Viscosity function | 105 | | | 10.6.7 | Certificates | 105 | | | 10.6.8 | Country-specific delivery | 108 | | | 10.6.9 | Country-specific application | 108 | | | 10.6.10 | Rupture disc | 108 | | | 10.6.11 | Tube Health Check | 108 | | | 10.6.12 | Transmitter housing rotated 180° | 109 | | | 10.6.13 | Measurement of heat quantity | 109 | | | 10.6.14 | Marine approval | 110 | | | 10.6.15 | Cable glands and blind plug | 110 | | | 10.6.16 | Customer-specific special product manufacture | 110 | | 10 7 | Orderin | a Instructions | 111 | #### 1 Introduction #### 1.1 Applicable documents For Ex approval specification, refer to the following documents: - Explosion Proof Type Manual ATEX IM 01U10X01-00\_\_-R<sup>1)</sup> - Explosion Proof Type Manual IECEx IM 01U10X02-00\_\_-R<sup>1)</sup> - Explosion Proof Type Manual FM IM 01U10X03-00\_\_-R<sup>1)</sup> - Explosion Proof Type Manual INMETRO IM 01U10X04-00\_\_-R<sup>1)</sup> - Explosion Proof Type Manual PESO IM 01U10X05-00\_\_-R<sup>1)</sup> - Explosion Proof Type Manual NEPSI IM 01U10X06-00\_\_-R<sup>1)</sup> - Explosion Proof Type Manual KOREA Ex IM 01U10X07-00 \_\_-R<sup>1)</sup> - Explosion Proof Type Manual EAC Ex IM 01U10X08-00\_\_\_-R<sup>1)</sup> - Explosion Proof Type Manual Japan Ex IM 01U10X09-00\_\_-R<sup>1)</sup> Other applicable User's manuals: Protection of Environment (Use in China only) IM 01A01B01-00ZH-R <sup>1)</sup> The "\_" symbols are placeholders. Here for example, for the corresponding language version (DE, EN, etc.). Introduction Product overview #### 1.2 Product overview Rotamass Total Insight Coriolis mass flow and density meters are available in various product families distinguished by their applications. Each product family includes several product alternatives and additional device options that can be selected. The following overview serves as a guide for selecting products. Overview of Rotamass Total Insight product families | _ | | | |----------------------|----------|----------------------------------------------------------------------------------------------------------------------------| | | | For low flow rate applications | | | 10 | Meter sizes: Nano 06, Nano 08, Nano 10, Nano 15, Nano 20 | | Rotamass<br>Nano | 1 | Connection sizes: | | 1 tario | | <ul> <li>DN15, DN25, DN40</li> </ul> | | | | • ½", ¾", ½", ¾", 1", 1½" | | | | Maximum mass flow: 1.5 t/h (55 lb/min) | | | | Versatility with superior turndown and low pressure loss | | Rotamass | <b>2</b> | Meter sizes: Prime 25, Prime 40, Prime 50, Prime 80, Prime 1H | | Prime | 1 | Connection sizes: | | | | <ul> <li>DN15, DN25, DN40, DN50, DN80, DN100, DN125</li> <li>3/8", 1/2", 3/4", 1", 11/2", 2", 21/2", 3", 4", 5"</li> </ul> | | | | Maximum mass flow: 255 t/h (9400 lb/min) | | | | Excellent performance under demanding conditions | | | ~ | Meter sizes: Supreme 34, Supreme 36, Supreme 38, Supreme 39 | | Rotamass | | Connection sizes: | | Supreme | | <ul> <li>DN15, DN25, DN40, DN50, DN65, DN80, DN100,<br/>DN125</li> </ul> | | | | • 3/8", 1/2", 3/4", 1", 11/2", 2", 21/2", 3", 4", 5" | | | | Maximum mass flow: 170 t/h (6200 lb/min) | | | | For high process pressure applications | | Rotamass | <b>6</b> | Meter sizes: Intense 34, Intense 36, Intense 38 | | Intense | | Connection sizes: | | | | • <sup>3</sup> / <sub>8</sub> ", <sup>1</sup> / <sub>2</sub> ", <sup>3</sup> / <sub>4</sub> ", 1", 2" | | | | Maximum mass flow: 50 t/h (1800 lb/min) | | | | For food, beverage and pharmaceutical applications | | Potomoco | A | Meter sizes: Hygienic 25, Hygienic 40, Hygienic 50, Hygienic 80 | | Rotamass<br>Hygienic | | Connection sizes: | | 73 | 4.5- | <ul> <li>DN25, DN40, DN50, DN65, DN80</li> </ul> | | | | • 1", 1½", 2", 2½", 3" | | | | Maximum mass flow: 76 t/h (2800 lb/min) | | | | For high flow rate applications | | | N UJ | Meter sizes: Giga 1F, Giga 2H | | Rotamass<br>Giga | | Connection sizes: | | Giga | | DN100, DN125, DN150, DN200 | | | | = 4", 5", 6", 8" | | | | Maximum mass flow: 600 t/h (22000 lb/min) | #### 2 Measuring principle and flow meter design #### 2.1 Measuring principle The measuring principle is based on the generation of Coriolis forces. For this purpose, a driver system (E) excites the two measuring tubes (M1, M2) in their first resonance frequency. Both pipes vibrate inversely phased, similar to a resonating tuning fork. Fig. 1: Coriolis principle | M1,M2 | Measuring tubes | E | Driver system | |--------|-----------------|---|---------------------------------------| | S1, S2 | Pick-offs | Α | Direction of measuring tube vibration | | F1. F2 | Coriolis forces | Q | Direction of fluid flow | Mass flow The fluid flow through the vibrating measuring tubes generates Coriolis forces (F1, -F1 and F2, -F2) that produce positive or negative values for the tubes on the inflow or outflow side. These forces are directly proportional to the mass flow and result in deformation (torsion) of the measuring tubes. Fig. 2: Coriolis forces and measuring tube deformation | 1 | Measuring tube mount | $A_{E}$ | Rotational axis | |---|----------------------|---------|-----------------| | 2 | Fluid | F1, F2 | Coriolis forces | | 3 | Measuring tube | α | Torsion angle | The small deformation overlying the fundamental vibration is recorded by means of pick-offs (S1, S2) attached at suitable measuring tube locations. The resulting phase shift $\Delta \varphi$ between the output signals of pick-offs S1 and S2 is proportional to the mass flow. The output signals generated are further processed in a transmitter. Fig. 3: Phase shift between output signals of S1 and S2 pick-offs $\Delta \varphi$ Phase shift m Dynamic mass t Time dm/dt Mass flow $F_c$ Coriolis force **Density** measurement Using a driver and an electronic regulator, the measuring tubes are operated in their resonance frequency f. This resonance frequency is a function of measuring tube geometry, material properties and the mass of the fluid covibrating in the measuring tubes. Altering the density and the attendant mass will alter the resonance frequency. The transmitter measures the resonance frequency and calculates density from it according to the formula below. Device-dependent constants are determined individually during calibration. Fig. 4: Resonance frequency of measuring tubes A Measuring tube displacement $f_1$ Resonance frequency with fluid 1 $f_2$ Resonance frequency with fluid 2 $$\rho = \frac{\alpha}{f^2} + \beta$$ ρ Fluid density f Resonance frequency of measuring tubes $\alpha, \beta$ Device-dependent constants Temperature measurement The measuring tube temperature is measured in order to compensate the effects of temperature on the flow meter. This temperature approximately equals the fluid temperature and is made available as a measured quantity at the transmitter as well. #### 2.2 Flow meter The Rotamass Coriolis flow meter consists of: - Sensor - Transmitter When the integral type is used, sensor and transmitter are firmly connected. Fig. 5: Configuration of the Rotamass integral type - 1 Transmitter - 2 Sensor - 3 Process connections When the remote type is used, sensor and transmitter are linked via connecting cable. As a result, sensor and transmitter can be installed in different locations. Fig. 6: Configuration of the Rotamass remote type - Transmitter Sensor terminal box Sensor Connecting cable - 3 Process connections Fig. 7: Configuration of the Rotamass remote type - long neck | 1 | Transmitter | 4 | Sensor terminal box | |---|-------------|---|---------------------| | 2 | Sensor | 5 | Connecting cable | | _ | | | | 3 Process connections ### General specifications All available properties of the Rotamass Coriolis flow meter are specified by means of a model code. One model code position may include several characters depicted by means of dashed lines. The positions of the model code relevant for the respective properties are depicted and highlighted in blue. Any values that might occupy these model code positions are subsequently explained. Fig. 8: Highlighted model code positions Fig. 9: Example of a completed model code A complete description of the model code is included in the chapter *Ordering information* [> 78]. #### Type of design Position 10 of the model code defines whether the integral type or the remote type is used. It specifies further flow meter properties, such as the transmitter coating, see *Design and housing* [> 98]. | Flow meter | Model code position 10 | |-----------------------------|------------------------| | Integral type | 0, 2 | | Remote type - standard neck | A, E, J | | Remote type - long neck | B, F, K | Transmitter overview Two different transmitters can be combined with the sensor: Essential and Ultimate. Essential transmitter is suitable for general purposes applications and it delivers accurate and precise measurements of flow rate and density. Ultimate transmitter, thanks to the advanced functions and "Features on Demand", offers dedicated application solutions with a superior accuracy and performances in measuring flow rate, density and concentration. | Transmitter | Properties | Model code position 1 | |----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------| | Essential | <ul> <li>Down to 0.15 % mass flow accuracy for liquids</li> <li>Down to 0.75 % mass flow accuracy for gases</li> <li>Down to 4 g/l (0.25 lb/ft³) accuracy for density</li> <li>Total Health Check (diagnostic function)</li> <li>Advanced functions: <ul> <li>Tube Health Check (diagnostic function)</li> </ul> </li> <li>Communication: <ul> <li>HART</li> <li>Modbus</li> </ul> </li> <li>Data backup on microSD card</li> </ul> | Е | | Ultimate | <ul> <li>Down to 0.1 % mass flow accuracy for liquids</li> <li>Down to 0.5 % mass flow accuracy for gases</li> <li>Down to 0.5 g/l (0.03 lb/ft³) accuracy for density</li> <li>Total Health Check (diagnostic function)</li> <li>Advanced functions: <ul> <li>Net Oil Computing following API standard</li> <li>Viscosity function</li> <li>Batching function</li> <li>Measurement of heat quantity</li> <li>Tube Health Check (diagnostic function)</li> </ul> </li> <li>Features on Demand</li> <li>Communication: <ul> <li>HART</li> <li>Modbus</li> <li>PROFIBUS PA</li> </ul> </li> <li>Data backup on microSD card</li> </ul> | U | | No transmitter | <ul> <li>Spare sensor without transmitter, combinable with Rotamass Total Insight transmitter</li> </ul> | N | #### 3 Application and measuring ranges #### 3.1 Measured quantities The Rotamass Coriolis flow meter can be used to measure the following fluids: - Liquids - Gases - Mixtures, such as emulsions, suspensions, slurries Possible limitations applying to measurement of mixtures must be checked with the responsible Yokogawa sales organization. The following variables can be measured using Rotamass: - Mass flow - Density - Temperature Based on these measured quantities, the transmitter also calculates: - Volume flow - Partial component concentration of a two-component mixture - Partial component flow rate of a mixture consisting of two components (net flow) In this process, the net flow is calculated based on the known partial component concentration and the overall flow. #### 3.2 Measuring range overview | | Intense 34 | Intense 36 | Intense 38 | | |-----------------------------|--------------------------------------|----------------------------------------|----------------------------------------|--------| | Mass flow range | | | | | | Typical connection size | 1/2" | 1" | 2" | | | $Q_{nom}$ | 3 t/h<br>(110 lb/min) | 10 t/h<br>(370 lb/min) | 32 t/h<br>(1200 lb/min) | [ 14] | | Q <sub>max</sub> | 5 t/h<br>(180 lb/min) | 17 t/h<br>(620 lb/min) | 50 t/h<br>(1800 lb/min) | | | Maximum volume flow | | | | | | (Water) | 5 m <sup>3</sup> /h<br>(42 barrel/h) | 17 m <sup>3</sup> /h<br>(140 barrel/h) | 50 m <sup>3</sup> /h<br>(420 barrel/h) | [ 14] | | Range of fluid density | ' | , | | | | | | 0 – 5 kg/l<br>(0 – 312 lb/ft³) | | [> 15] | | Process fluid temperature i | ange | | | | | Standard <sup>1)</sup> | | -70 – 150 °C<br>(-94 – 302 °F) | | [ 29] | <sup>1)</sup> May be further restricted depending on the design. Q<sub>nom</sub> - Nominal mass flow Q<sub>max</sub> - Maximum mass flow The nominal mass flow $Q_{nom}$ is defined as the mass flow of water (temperature: 20 °C) at 1 bar (14.5 psi) pressure loss across the flow meter. #### 3.3 Mass flow For Rotamass Intense the following meter sizes to be determined using the *Model code* [> 95] are available. ## Mass flow of liquids | Meter size | Typical connection size | Q <sub>nom</sub><br>in t/h (lb/min) | Q <sub>max</sub><br>in t/h (lb/min) | Model code position 3 | |------------|-------------------------|-------------------------------------|-------------------------------------|-----------------------| | Intense 34 | 1/2" | 3 (110) | 5 (180) | 34 | | Intense 36 | 1" | 10 (370) | 17 (620) | 36 | | Intense 38 | 2" | 32 (1200) | 50 (1800) | 38 | ## Mass flow of gases When using Rotamass for measuring the flow of gases, the mass flow is usually limited by the pressure loss generated and the maximum flow velocity. | Type of gas | Maximum flow velocity | |-------------|------------------------| | Oxygen | 60 m/s | | Methane | 40 m/s | | Natural gas | 40 m/s | | Other gases | 33 % of sound velocity | #### 3.4 Volume flow Volume flow of liquids (water at 20 °C) | Meter size | Volume flow<br>(at 1 bar pressure loss)<br>in m³/h (barrel/h) | Maximum volume flow in m³/h (barrel/h) | |------------|---------------------------------------------------------------|----------------------------------------| | Intense 34 | 3 (25) | 5 (42) | | Intense 36 | 10 (84) | 17 (140) | | Intense 38 | 32 (270) | 50 (420) | ## Volume flow of gases When using Rotamass for measuring the flow of gases, the flow rate is usually limited by the pressure loss generated and the maximum flow velocity. | Type of gas | Maximum flow velocity | |-------------|------------------------| | Oxygen | 60 m/s | | Methane | 40 m/s | | Natural gas | 40 m/s | | Other gases | 33 % of sound velocity | #### 3.5 Pressure loss The pressure loss along the flow meter is heavily dependent on the application. The pressure loss of 1 bar at nominal mass flow $Q_{\text{nom}}$ also applies to water and is considered the reference value. #### 3.6 Density | Meter size | Measuring range of density | |------------|-----------------------------| | Intense 34 | | | Intense 36 | 0 – 5 kg/l (0 – 312 lb/ft³) | | Intense 38 | | Rather than being measured directly, density of gas is usually calculated using its reference density, process fluid temperature and process pressure. #### 3.7 Temperature The process fluid temperature measuring range is limited by: - Design type (integral or remote) - Process connection size and type - Ex approvals Maximum measuring range: -70 - 150 °C (-94 - 302 °F) Accuracy Overview #### 4 Accuracy In this chapter, maximum deviations are indicated as absolute values. All accuracy data are given in ± values. #### 4.1 Overview ## Achievable accuracies for liquids The value $D_{\text{flat}}$ specified for accuracy of mass flow applies for flow rates exceeding the mass flow limit $Q_{\text{flat}}$ . If the flow rate is less than $Q_{\text{flat}}$ , other effects have to be considered. If the flow rate is higher than $Q_{nom}$ , other effects might influence the accuracy (e.g. cavitation). The following values are achieved at calibration conditions when the device is delivered, see *Calibration conditions* [ 24]. Depending on the product version selected, specifications may not be as accurate, see *Mass flow and density accuracy* [ 97]. | Measured quantity | | Accuracy for transmitters | | | |-------------------------|------------------------------------------|---------------------------|--------------------------|--| | | | Essential | Ultimate | | | Mass flow <sup>1)</sup> | Accuracy <sup>2)</sup> D <sub>flat</sub> | 0.15 % of measured value | 0.1 % of measured value | | | IVIASS HOW | Repeatability <sup>3)</sup> | 0.08 % of measured value | 0.05 % of measured value | | | Volume flow | Accuracy <sup>2)</sup> D <sub>V</sub> | 0.43 % of measured value | 0.12 % of measured value | | | (water) <sup>1)</sup> | Repeatability <sup>3)</sup> | 0.22 % of measured value | 0.06 % of measured value | | | Density | Accuracy <sup>2)</sup> | 4 g/l (0.25 lb/ft³) | 0.5 g/l (0.03 lb/ft³) | | | | Repeatability <sup>3)</sup> | 2 g/l (0.13 lb/ft³) | 0.3 g/l (0.02 lb/ft³) | | | Temperature | Accuracy <sup>2)</sup> | 0.5 °C (0.9 °F) | 0.5 °C (0.9 °F) | | <sup>&</sup>lt;sup>1)</sup> Based on the measured values of the pulse output. This means that the flow accuracy and repeatability considers the combined measurement uncertainties including sensor, electronic and pulse output interface. ## Achievable accuracies for gases | Measured quantity | | Accuracy for transmitters | | | |------------------------------------|------------------------------------------|---------------------------|-------------------------|--| | | | Essential | Ultimate | | | Mass flow / | Accuracy <sup>2)</sup> D <sub>flat</sub> | 0.75 % of measured value | 0.5 % of measured value | | | standard volume flow <sup>1)</sup> | Repeatability <sup>3)</sup> | 0.6 % of measured value | 0.4 % of measured value | | | Temperature | Accuracy <sup>2)</sup> | 0.5 °C (0.9 °F) | 0.5 °C (0.9 °F) | | <sup>&</sup>lt;sup>1)</sup> Based on the measured values of the pulse output. This means that the flow accuracy and repeatability considers the combined measurement uncertainties including sensor, electronic and pulse output interface. <sup>&</sup>lt;sup>2)</sup> Best accuracy per transmitter type. <sup>&</sup>lt;sup>3)</sup> The stated repeatability is included in the accuracy. <sup>&</sup>lt;sup>2)</sup> Best mass flow accuracy per transmitter type. <sup>&</sup>lt;sup>3)</sup> The stated repeatability is included in the accuracy. #### 4.2 Zero point stability of the mass flow In case of no flow, the maximum measured flow rate is called *Zero point stability*. Zero point values are shown in the table below. | Meter size | Zero point stability Z<br>in kg/h (lb/h) | |------------|------------------------------------------| | Intense 34 | 0.15 (0.33) | | Intense 36 | 0.5 (1.1) | | Intense 38 | 1.6 (3.5) | #### 4.3 Mass flow accuracy Above mass flow $Q_{\text{flat}}$ , maximum deviation is constant and referred to as $D_{\text{flat}}$ . It depends on the product version and can be found in the tables in chapter *Accuracy of mass flow* and density according to the model code [ $\triangleright$ 22]. Use the following formulas to calculate the maximum deviation *D*: D<sup>1)</sup> Maximum deviation in % D<sub>flat</sub> Maximum deviation for high flow rates in % Q<sub>m</sub> Mass flow in kg/h ${f Q}_{ m flat}$ Mass flow value above which ${f D}_{ m flat}$ applies, in kg/h a, b Constants <sup>1)</sup> The repeatability is always 50 % of *D* and is included in the accuracy. | Meter size | Model code position 9 | D <sub>flat</sub> in % | Q <sub>flat</sub><br>in kg/h | a<br>in kg/h | b<br>in % | |------------|-----------------------|------------------------|------------------------------|--------------|-----------| | | E7 | 0.2 | 150 | 0.38 | -0.05 | | | D7 | 0.15 | 200 | 0.21 | 0.043 | | Intense 34 | C2, C3 | 0.1 | 250 | 0.17 | 0.032 | | | 70 | 0.75 | 150 | 0.38 | 0.5 | | | 50 | 0.5 | 200 | 0.21 | 0.393 | | | E7 | 0.2 | 500 | 1.3 | -0.05 | | | D7 | 0.15 | 670 | 0.71 | 0.044 | | Intense 36 | C2, C3 | 0.1 | 830 | 0.57 | 0.032 | | | 70 | 0.75 | 500 | 1.3 | 0.5 | | | 50 | 0.5 | 670 | 0.71 | 0.394 | | | E7 | 0.2 | 1600 | 4 | -0.05 | | | D7 | 0.15 | 2100 | 2.3 | 0.04 | | Intense 38 | C2, C3 | 0.1 | 2670 | 1.8 | 0.032 | | | 70 | 0.75 | 1600 | 4 | 0.5 | | | 50 | 0.5 | 2100 | 2.3 | 0.39 | Accuracy Mass flow accuracy Accuracy using water at 20 °C as an example Fig. 10: Schematic dependency of the maximum deviation on the mass flow $\begin{array}{lll} D & \text{Maximum deviation in \%} & Q_{\text{m}} & \text{Mass flow in kg/h} \\ Q_{\text{nom}} & \text{Nominal mass flow in kg/h} & Q_{\text{flat}} & \text{Mass flow above which } D_{\text{flat}} \\ & & \text{applies, in kg/h} \end{array}$ Accuracy Mass flow accuracy #### 4.3.1 Sample calculation for liquids | Turndown $Q_m$ : $Q_{nom}$ | Maximum deviation D | Water pressure loss | |----------------------------|---------------------|-----------------------| | 1:100 | 0.60 % | ≈ 0 mbar (0 psi) | | 1:40 | 0.26 % | 0.7 mbar (0.01 psi) | | 1:20 | 0.15 % | 2.5 mbar (0.04 psi) | | 1:10 | 0.10 % | 10 mbar (0.15 psi) | | 1:2 | 0.10 % | 250 mbar (3.62 psi) | | 1:1 | 0.10 % | 1000 mbar (14.50 psi) | #### Example Fluid: Liquid Maximum deviation $D_{\text{flat}}$ : 0.1 % 250 kg/h Q<sub>flat</sub>: Constant a: 0.17 kg/h Constant b: 0.032 % Value of mass flow $Q_m$ : 75 kg/h #### Calculation of flow rate condition: Check whether $Q_m \ge Q_{flat}$ $Q = 75 \text{ kg/h} < Q_{\text{flat}} = 250 \text{ kg/h}$ As a result, accuracy is calculated using the following formula: $$D = \frac{a \times 100 \%}{Q_m} + b$$ #### Calculation of accuracy: $D = 0.17 \text{ kg/h} \times 100 \% / 75 \text{ kg/h} + 0.032 \%$ D = 0.26 % Accuracy Mass flow accuracy #### 4.3.2 Sample calculation for gases The maximum deviation in the case of gases depends on the product version selected, see also *Mass flow and density accuracy* [> 97]. #### Example Fluid: Gas Maximum deviation $D_{\text{flat}}$ : 0.5 % $Q_{\text{flat}}$ : 200 kg/h Constant a: 0.21 kg/h Constant b: 0.393 % Value of mass flow $Q_{\text{m}}$ : 30 kg/h #### Calculation of the flow rate condition: Check whether $$Q_m \ge Q_{flat}$$ $$Q_{\rm m}$$ = 30 kg/h < $Q_{\rm flat}$ = 200 kg/h As a result, the accuracy is calculated using the following formula: $$D = \frac{a \times 100 \%}{Q_m} + b$$ #### Calculation of accuracy: $$D = 0.21 \text{ kg/h} \times 100 \% / 30 \text{ kg/h} + 0.393 \%$$ $$D = 1.11 \%$$ #### 4.4 Accuracy of density #### 4.4.1 For liquids | Meter size | Transmitter | Maximum deviation of density <sup>1)</sup> in g/l (lb/ft³) | | |------------|-------------|------------------------------------------------------------|--| | Intense 34 | | | | | Intense 36 | Essential | Down to 4 (0.25) | | | Intense 38 | | | | | Intense 34 | | | | | Intense 36 | Ultimate | Down to 0.5 (0.03) | | | Intense 38 | | | | <sup>&</sup>lt;sup>1)</sup> Deviations possible depending on product version (meter size, type of calibration) The maximum deviation depends on the product version selected, see also Accuracy of mass flow and density according to the model code [ 22]. #### 4.4.2 For gases In most applications, density at standard conditions is fed into the transmitter and used to calculate the standard volume flow based on mass flow. If gas pressure is a known value, after entering a reference density, the transmitter is able to calculate gas density from temperature and pressure as well (while assuming an ideal gas). Alternatively, there is an option for measuring gas density. In order to do so, it is necessary to adapt the lower density limit value in the transmitter. For most applications the direct measurement of the gas density will have insufficient accuracy. #### 4.5 Accuracy of mass flow and density according to the model code Accuracy for flow rate as well as density is selected via model code position 9. Here a distinction is made between devices for measuring liquids and devices for measuring gases. No accuracy for density measurement is specified for gas measurement devices. #### 4.5.1 For liquids #### **Essential** | Model code position 9 | deviation of | Applicable measuring range of accuracy in kg/l | Maximum o | deviation <i>D</i> <sub>flat</sub> for in % | r mass flow | |-----------------------|---------------------------------|------------------------------------------------|------------|---------------------------------------------|-------------| | | density <sup>1)</sup><br>in g/l | | Intense 34 | Intense 36 | Intense 38 | | E7 | 4 | 0.3 - 5 | 0.2 | 0.2 | 0.2 | | D7 <sup>2)</sup> | 4 | 0.3 - 5 | 0.15 | 0.15 | 0.15 | <sup>&</sup>lt;sup>1)</sup> Specified maximum deviation is achieved within the applicable measuring range for density. #### **Ultimate** | Model code position 9 | Maximum deviation of | leviation of measuring | Maximum deviation $D_{\mathrm{flat}}$ for mass flow in % | | | |-----------------------|---------------------------------|---------------------------------|----------------------------------------------------------|------------|------------| | | density <sup>1)</sup><br>in g/l | range of<br>accuracy<br>in kg/l | Intense 34 | Intense 36 | Intense 38 | | E7 | 4 | 0.3 - 5 | 0.2 | 0.2 | 0.2 | | C3 | 1 | 0.3 - 5 | 0.1 | 0.1 | 0.1 | | C2 <sup>2)</sup> | 0.5 | 0.3 - 2.5 | 0.1 | 0.1 | 0.1 | <sup>&</sup>lt;sup>1)</sup> Specified maximum deviation is achieved within the applicable measuring range for density. #### 4.5.2 For gases #### **Essential** | Model code position 9 | Maximum deviation $D_{\text{flat}}$ of mass flow in % | |-----------------------|-------------------------------------------------------| | 70 | 0.75 | #### **Ultimate** | Model code position 9 | Maximum deviation $D_{\text{flat}}$ of mass flow in % | |-----------------------|-------------------------------------------------------| | 50 <sup>1)</sup> | 0.5 | <sup>&</sup>lt;sup>1)</sup> Notice: In case of a spare sensor combined with a transmitter in use, the original accuracy specification may be affected. For calibration services, please contact Yokogawa Service department. <sup>&</sup>lt;sup>2)</sup> Notice: In case of a spare sensor combined with a transmitter in use, the original accuracy specification may be affected. For calibration services, please contact Yokogawa Service department. <sup>&</sup>lt;sup>2)</sup> Notice: In case of a spare sensor combined with a transmitter in use, the original accuracy specification may be affected. For calibration services, please contact Yokogawa Service department. #### 4.6 Volume flow accuracy #### 4.6.1 For liquids The following formula can be used to calculate the accuracy of liquid volume flow: $$D_{V} = \sqrt{D^{2} + \left(\frac{\Delta \rho}{\rho} \times 100\%\right)^{2}}$$ $D_{\vee}$ Maximum deviation of volume flow in % $\Delta \rho$ Maximum deviation of density in kg/l D Maximum deviation of mass flow in % ρ Density in kg/l #### 4.6.2 For gases Accuracy of standard volume flow for gas with a fixed composition equals the maximum deviation *D* of the mass flow. $$D_{\vee} = D$$ In order to determine the standard volume flow for gas, it is necessary to input a reference density in the transmitter. The accuracy specified is achieved only for fixed gas composites. Major deviations may appear if the gas composition changes. #### 4.7 Accuracy of temperature Various process fluid temperature ranges are specified for Rotamass Intense: - Integral type: -50 150 °C (-58 302 °F) - Remote type: -70 150 °C (-94 302 °F) Accuracy of temperature depends on the sensor temperature range selected (see *Process fluid temperature range* [> 29]) and can be calculated as follows: Formula for temperature specification *Standard* $$\Delta T = 0.5 \,^{\circ}\text{C} + 0.005 \times |T_{pro} - 20 \,^{\circ}\text{C}|$$ $\Delta T$ Maximum deviation of temperature T<sub>pro</sub> Process fluid temperature in °C Fig. 11: Presentation of temperature accuracy Accuracy Repeatability #### Example The sample model code specifies the Standard temperature range. Process fluid temperature T<sub>pro</sub>: 50 °C #### Calculation of accuracy: $$\Delta T = 0.5 \,^{\circ}\text{C} + 0.005 \times |50 \,^{\circ}\text{C} - 20 \,^{\circ}\text{C}|$$ $$\Delta T = 0.65 \, ^{\circ}\text{C}$$ #### 4.8 Repeatability #### For liquids When using default damping times, the specified repeatability of mass flow, density and temperature measurements equals half of the respective maximum deviation. $$R = \frac{D}{2}$$ R Repeatability D Maximum deviation #### For gases In deviation hereto, the following applies to mass and standard volume flow of gases: $$R = \frac{D}{1.25}$$ #### 4.9 Calibration conditions #### 4.9.1 Mass flow calibration and density adjustment All Rotamass are calibrated in accordance with the state of the art at Rota Yokogawa. Optionally, the calibration can be performed according to a method accredited by DAkkS in accordance with DIN EN ISO/IEC 17025 (Option K5, see *Certificates [*> 106]). Each Rotamass device comes with a standard calibration certificate. Calibration takes place at reference conditions. Specific values are listed in the standard calibration certificate. | | Reference conditions | |-----------------------------|----------------------------------------| | Fluid | Water | | Density | 0.9 – 1.1 kg/l (56 – 69 lb/ft³) | | Fluid temperature | 10 – 35 °C (50 – 95 °F) | | Fluid temperature | Average temperature: 22.5 °C (72.5 °F) | | Ambient temperature | 10 – 35 °C (50 – 95 °F) | | Process pressure (absolute) | 1 – 2 bar (15 – 29 psi) | The accuracy specified is achieved at as-delivered calibration conditions stated. #### 4.9.2 Density calibration Density calibration is performed for maximum deviation of 0.5 g/l (0.03 lb/ft $^{3}$ ), (model code pos. 9 $_{2}$ ). Density calibration includes: - Determination of calibration constants for fluid densities at 0.7 kg/l (44 lb/ft³), 1 kg/l (62 lb/ft³) and 1.65 kg/l (103 lb/ft³) at 20 °C (68 °F) fluid temperature - Determination of temperature compensation coefficients at 20 80 °C (68 176 °F) - Check of results for fluid densities at 0.7 kg/l (44 lb/ft³), 1 kg/l (62 lb/ft³) and 1.65 kg/l (103 lb/ft³) at 20 °C (68 °F) fluid temperature - Special flow meter configuration: - Specific insulation of temperature sensors - Preaging for long-term stability - · Creation of density calibration certificate #### 4.10 Process pressure effect Process pressure effect is defined as the change in sensor flow and density deviation due to process pressure change away from the calibration pressure. This effect can be corrected by dynamic pressure input or a fixed process pressure. *Tab. 1:* Process pressure effect, wetted parts stainless steel 1.4404/ 316L and Ni alloy C-22/ 2.4602 | Meter size | | Deviation of Flow | | Deviation of Density | | |------------|-------------|----------------------|----------------------|----------------------|-------------------| | | | in % of rate per bar | in % of rate per psi | in g/l<br>per bar | in g/l<br>per psi | | Intense 34 | 1.4404/316L | -0.0005 | -0.00003 | -0.066 | -0.0046 | | intense 34 | C-22/2.4602 | -0.0005 | -0.00003 | -0.076 | -0.0052 | | | 1.4404/316L | -0.0024 | -0.00017 | -0.193 | -0.0133 | | Intense 36 | C-22/2.4602 | -0.0023 | -0.00016 | -0.192 | -0.0132 | | Intense 38 | 1.4404/316L | -0.0034 | -0.00023 | -0.378 | -0.0261 | | | C-22/2.4602 | -0.0035 | -0.00024 | -0.381 | -0.0263 | #### 4.11 Process fluid temperature effect For mass flow and density measurement, process fluid temperature effect is defined as the change in sensor flow and density accuracy due to process fluid temperature change away from the calibration temperature. For temperature ranges, see *Process fluid temperature range* [> 29]. Temperature effect on Zero Temperature effect on Zero of mass flow can be corrected by zeroing at the process fluid temperature. Temperature effect on mass flow The process fluid temperature is measured and the temperature effect compensated. However due to uncertainties in the compensation coefficients and in the temperature measurement an uncertainty of this compensation is left. The typical rest error of Rotamass Total Insight temperature effect on mass flow is: Tab. 2: All models | Temperature range | Uncertainty of flow | |-------------------|-------------------------------------------------| | Standard | ±0.0011 % of rate / °C (±0.0006 % of rate / °F) | The temperature used for calculation of the uncertainty is the difference between process fluid temperature and the temperature at calibration condition. For temperature ranges, see *fluid temperature range* [> 29]. Temperature effect on density measurement (liquids) Process fluid temperature influence: Formula for metric values $$D'_{\rho} = \pm k \times \text{abs} (T_{\text{pro}} - 20 \,^{\circ}\text{C})$$ Formula for imperial values $$D'_{\rho} = \pm k \times \text{abs} (T_{\text{pro}} - 68 \,^{\circ}\text{F})$$ D'<sub>o</sub> Additional density deviation due to the effect of fluid temperature in g/l (lb/ft³) $T_{\text{pro}}$ Process fluid temperature in °C (°F) k Constant for temperature effect on density measurement in g/l × $1/^{\circ}$ C (lb/ft<sup>3</sup> × $1/^{\circ}$ F) Tab. 3: Constants for particular meter size and model code position (see also *Process fluid temperature range* [▶ 29] and *Mass flow and density accuracy* [▶ 97]) | Meter size | Model code position 4 | Model code position 8 | Model code position 9 | k in g/l × 1/°C (lb/ft³ × 1/°F) | |------------|-----------------------|-----------------------|-----------------------|---------------------------------| | | S | | C3, D7, E7 | 0.150 (0.0052) | | Intense 34 | Н | | C3, D7, E7 | 0.170 (0.0059) | | intense 54 | S | | C2 | 0.068 (0.0024) | | | Н | | 02 | 0.027 (0.0009) | | | S | | C3, D7, E7 | 0.110 (0.0038) | | Intense 36 | Н | 0 | C3, D7, E7 | 0.090 (0.0031) | | intense 30 | S | U | C2 | 0.034 (0.0012) | | | Н | | 02 | 0.019 (0.0007) | | | S | | C3, D7, E7 | 0.070 (0.0024) | | Intense 38 | Н | | C3, D7, E7 | 0.060 (0.0021) | | | S | | C2 | 0.028 (0.0010) | | | Н | | 02 | 0.018 (0.0006) | #### 5 Operating conditions #### 5.1 Location and position of installation Rotamass Coriolis flow meters can be mounted horizontally, vertically and at an incline. The measuring tubes should be completely filled with the fluid during flow measurement as accumulations of air or formation of gas bubbles in the measuring tube may result in errors in measurement. Straight pipe runs at inlet or outlet are usually not required. Avoid the following installation locations and positions: - Measuring tubes as highest point in piping when measuring liquids - Measuring tubes as lowest point in piping when measuring gases - Immediately in front of a free pipe outlet in a downpipe - Lateral positions Fig. 12: Installation position to be avoided: Flow meter in sideways position #### 5.1.1 Sensor installation position Sensor installation position as a function of the fluid | Installation position | Fluid | Description | |---------------------------------------|--------|---------------------------------------------------------------------------------------------------------| | Horizontal, measuring tubes at bottom | Liquid | The measuring tubes are oriented toward the bottom. Accumulation of gas bubbles is avoided. | | Horizontal, measuring tubes at top | Gas | The measuring tubes are oriented toward the top. Accumulation of liquid, such as condensate is avoided. | | Installation position | Fluid | Description | |-----------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Vertical, direction of flow towards the top (recommended) | | The sensor is installed on a pipe with | | | Liquid/gas | the direction of flow towards the top. Accumulation of gas bubbles or solids is avoided. This position allows for complete self-draining of the measuring tubes. | #### 5.2 Installation instructions The following instructions for installation must be observed: - 1. Protect the flow meter from direct solar irradiation in order to avoid exceeding the maximum allowed temperature of the transmitter. - 2. In case of installing two sensors of the same kind back-to-back redundantly, use a customized design and contact the responsible Yokogawa sales organization. - 3. Avoid installation locations susceptible to cavitation, such as immediately behind a control valve. - 4. Avoid installation directly behind rotary and gear pumps to prevent fluctuations in pressure from interfering with the resonance frequency of the Rotamass measuring tubes. - 5. In case of remote installation: When installing the connecting cable between sensor and transmitter, keep the cable temperature above -10 °C (14 °F) to prevent cable damage from the installation stresses. #### 5.3 Process conditions The pressure and temperature ratings presented in this section represent the design values for the devices. For individual applications (e.g. marine applications with option MC\_) further limitations may apply according to the respective applicable regulations. For details see chapter *Marine approval* [> 110]. #### 5.3.1 Process fluid temperature range Allowed process fluid and ambient temperature ranges in hazardous areas depend on classifications defined by applications, refer to *Temperature specification in hazardous areas* [> 35]. For Rotamass Intense the following process fluid temperature ranges are available: | Temperature range | Model code position 8 | Process fluid<br>temperature<br>in °C<br>(°F) | Design type | Model code position 10 | |-------------------|-----------------------|-----------------------------------------------|---------------|------------------------| | Ctondard | 0 | -50 - 150<br>(-58 - 302) | Integral type | 0, 2 | | Standard | U | -70 – 150<br>(-94 – 302) | Remote type | A, B, E,<br>F, J, K | #### 5.3.2 Density | Meter size | Measuring range of density | | | |------------|-----------------------------|--|--| | Intense 34 | | | | | Intense 36 | 0 – 5 kg/l (0 – 312 lb/ft³) | | | | Intense 38 | | | | Rather than being measured directly, density of gas is usually calculated using its reference density, process fluid temperature and process pressure. #### 5.3.3 Pressure The maximum allowed process pressure depends on the selected process connection and its surface temperature. The given process connection temperature and process pressure ranges are calculated and approved without corrosion or erosion effects. The following diagrams shows the process pressure as a function of process connection temperature as well as the process connection used (type and size of process connection). ASME class 900 suitable for process connection ASME B16.5 Fig. 13: Allowed process pressure as a function of process connection temperature ASME class 1500 suitable for process connection ASME B16.5 Intense 34 Fig. 14: Allowed process pressure as a function of process connection temperature - 1 Process connection suitable for ASME B16.5 class 1500: Intense with meter size 34, material wetted parts S or H (without ASME compliance); Intense with meter size 34, material wetted parts H and ASME compliance(option P15) - 2 Process connection suitable for ASME B16.5 class 1500: Intense with meter size 34, material wetted parts S and ASME compliance(option P15) ## Process connection with internal thread G and NPT Fig. 15: Allowed process pressure as a function of temperature #### Rupture disc The rupture disc is located on the sensor housing. It is available as an option, see *rupture disc* [ 108]. The rupture disc's bursting pressure is 20 bar. In the case of big nominal diameters and high pressures, it is not possible to ensure that the entire process pressure is released across the rupture disc. In the event this is necessary, it is possible to request a customized design from the responsible Yokogawa sales organization. In the event of a burst pipe, the rupture disc provides an acoustic signal in applications with gases. #### 5.3.4 Mass flow For **liquids** the preferred measuring range is 10 % - 80 % of Q<sub>nom</sub>, see *Mass flow* [> 14]. For **gases**, as a result of low gas density, the maximum mass flow $Q_{max}$ is usually not reached in gas measurements. In general, the maximum flow velocity should not exceed 33 % of the sound velocity of the fluid, see *Mass flow* [> 14]. #### 5.3.5 Effect of temperature on accuracy ## Effect of process fluid temperature The specified accuracy of the density measurement (see *Mass flow and density accuracy* [> 97]) applies at calibration conditions and may deteriorate if process fluid temperatures deviate from those conditions. The effect of temperature is minimal for the product version with model code position 9, value \_2. For further description of process fluid temperature effect, see *Process fluid temperature* effect [> 26]. #### 5.3.6 Secondary containment Some applications or environment conditions require secondary containment retaining the process pressure for increased safety. All Rotamass Total Insight have a secondary containment filled with inert gas. The typical burst pressure values of the secondary housing are defined in the table below. Typical burst pressure at room temperature | Burst pressure in bar (psi) | | | | | |----------------------------------|--|--|--|--| | Intense 34 Intense 36 Intense 38 | | | | | | 120 (1740) | | | | | #### 5.4 Ambient conditions Rotamass Total Insight can be used at demanding ambient conditions. In doing so, the following specifications must be taken into account: The air surrounding the device is considered as ambient temperature. Allowed ambient and storage temperature of Rotamass Total Insight depends on the below components and their own temperature limits: - Sensor - Transmitter - Connecting cable between sensor and transmitter (for remote design type) ## Ambient temperature If the device is operating outdoors make sure that the solar irradiation does not increase the surface temperature of the device higher than the allowed maximum ambient temperature. Transmitter display has limited legibility below -20 °C (-4 °F). | Maximum ambient temperature range | | | | | |-----------------------------------------------------|------------------------|----------------------------|--|--| | integral type: | | -40 – 60 °C (-40 – 140 °F) | | | | remote type | | | | | | with standard cable | Sensor <sup>1)</sup> : | -50 – 80 °C (-58 – 176 °F) | | | | (option L): | Transmitter: | -40 - 60 °C (-40 - 140 °F) | | | | with fire retardant cable <sup>2)</sup> (option Y): | Sensor <sup>1)</sup> : | -35 – 80 °C (-31 – 176 °F) | | | | | Transmitter: | -35 – 60 °C (-31 – 140 °F) | | | <sup>&</sup>lt;sup>1)</sup> Check derating for high fluid temperature, see *Process fluid temperature range* [▶ 29], *Process conditions* [▶ 29] and *Allowed ambient temperature for sensor* [▶ 33] ## Storage temperature | Maximum storage temperature range | | | | | |-----------------------------------|--------------|----------------------------|--|--| | integral type | | -40 – 60 °C (-40 – 140 °F) | | | | remote type | | | | | | with standard cable | Sensor: | -50 – 80 °C (-58 – 176 °F) | | | | (option L): | Transmitter: | -40 - 60 °C (-40 - 140 °F) | | | | with fire retardant cable | Sensor: | -35 – 80 °C (-31 – 176 °F) | | | | (option Y): | Transmitter: | -35 – 60 °C (-31 – 140 °F) | | | ### Further ambient conditions | Ranges and specifications | | | |-----------------------------------------------------------------|------------------------------------------------------------------------------|--| | Relative humidity | 0 – 95 % | | | IP code | IP66/67 for transmitters and sensors when using the appropriate cable glands | | | Allowable pollution degree in surrounding area acc.: EN 61010-1 | 4 (in operation) | | | Resistance to vibration acc.: IEC 60068-2-6 (not with option T) | Transmitter: 10 – 500 Hz, 1g<br>Sensor: 25 – 100 Hz, 4g | | <sup>2)</sup> Lower temperature specification valid for fixed installation only | Ranges and specifications | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------| | Electromagnetic compatibility (EMC) IEC/EN 61326-1, Table 2 IEC/EN 61326-2-3 NAMUR NE 21 recommendation DNVGL-CG-0339, chapter 14 This includes Surge immunity acc.: EN 61000-4-5 for lightning protection Emission acc.: IEC/EN 61000-3-2, Class A IEC/EN 61000-3-3, Class A NAMUR NE 21 recommendation DNVGL-CG-0339, chapter 14 | Immunity assessment criterion: The output signal fluctuation is within ±1% of the output span. | | Maximum altitude | 2000 m (6600 ft) above mean sea level (MSL) | | Overvoltage category acc.: IEC/EN 61010-1 | II | | | | #### 5.4.1 Allowed ambient temperature for sensor The allowed ambient temperature of the sensor depends on the following product properties: - Process fluid temperature, see Process fluid temperature range [▶ 29] - Design type - Integral type - Remote type - Connecting cable type (options L\_\_\_ and Y\_\_\_) The allowed combinations of process fluid and ambient temperature for the sensor are illustrated as gray areas in the diagrams below. (i) Allowed process fluid and ambient temperature ranges in hazardous areas depend on classifications defined by applications, refer to *Temperature specification in hazardous areas* [> 35]. Temperature specification Standard, integral type Fig. 16: Allowed process fluid and ambient temperatures, integral type $T_{\text{amb}}$ Ambient temperature $T_{\text{pro}}$ Process fluid temperature Temperature specification Standard, remote type Fig. 17: Allowed process fluid and ambient temperatures, remote type - 1 Standard cable option L\_\_\_ - 2 Limitation for fire retardant cable option Y\_\_\_ for standard neck - 3 Limitation for fire retardant cable option Y\_\_\_ for long neck #### 5.4.2 Temperature specification in hazardous areas The maximum ambient and process fluid temperatures of Integral type and Remote Sensor depending on explosion groups and temperature classes can be determined via the model code or via the model code together with the Ex code (see the corresponding Explosion Proof Type Manual). Model code: The following figure shows the relevant positions of the model code: Pos. 2: T Pos. 8: 0 Pos. 10: 0, 2 Pos. 11: \_F21, FF11 Ex code: 6.85.86.87.54.10 Tab. 4: Temperature classification | Temperature class | Maximum ambient temperature in °C (°F) | Maximum fluid temperature in °C (°F) | |-------------------|----------------------------------------|--------------------------------------| | T6 | 43 (109) | 66 (150) | | T5 | 58 (136) | 82 (179) | | T4 | 60 (140) | 118 (244) | | Т3 | 60 (140) | 150 (302) | | T2 | 60 (140) | 150 (302) | | T1 | 60 (140) | 150 (302) | Model code: The following figure shows the relevant positions of the model code: Pos. 2: T Pos. 8: 0 Pos. 10: 0, 2 Pos. 11: \_F22, FF12 Ex code: 2.78.79.81.54.10 Tab. 5: Temperature classification | Temperature class | Maximum ambient temperature in °C (°F) | Maximum fluid temperature in °C (°F) | |-------------------|----------------------------------------|--------------------------------------| | T6 | 59 (138) | 59 (138) | | T5 | 60 (140) | 75 (167) | | T4 | 60 (140) | 112 (233) | | Т3 | 60 (140) | 150 (302) | | T2 | 60 (140) | 150 (302) | | T1 | 60 (140) | 150 (302) | Model code: The following figure shows the relevant positions of the model code: Pos. 2: T Pos. 8: 0 Pos. 10: 0, 2 Pos. 11: JF54, JF53 Ex code: Tab. 6: Temperature classification | Temperature class | Maximum ambient temperature in °C | Maximum fluid temperature in °C | |-------------------|-----------------------------------|---------------------------------| | T4 | 60 | 118 | | T3 | 60 | 150 | Model code: Pos. 2: T Pos. 8: 0 Pos. 10: A, E, J Pos. 11: \_F21, FF11 Ex code: 6.85.86.87.54.10 The following figure shows the relevant positions of the model code: Tab. 7: Temperature classification | Temperature class | Maximum ambient temperature in °C (°F) | | Maximum fluid temperature in °C (°F) | |-------------------|----------------------------------------|----------|--------------------------------------| | | Option L | Option Y | | | T6 | 41 (105) | 41 (105) | 66 (150) | | T5 | 56 (132) | 56 (132) | 82 (179) | | T4 | 80 (176) | 62 (143) | 118 (244) | | Т3 | 78 (172) | 49 (120) | 150 (302) | | T2 | 78 (172) | 49 (120) | 150 (302) | | T1 | 78 (172) | 49 (120) | 150 (302) | Option Y\_\_\_ not with model code pos. 11: FF11 Model code: Pos. 2: T Pos. 8: 0 Pos. 10: A, E, J Pos. 11: \_F22, FF12 Ex code: 2.78.79.81.54.10 The following figure shows the relevant positions of the model code: Tab. 8: Temperature classification | Temperature class | Maximum ambient temperature in °C (°F) | | Maximum fluid temperature in °C (°F) | |-------------------|----------------------------------------|----------|--------------------------------------| | | Option L | Option Y | | | T6 | 59 (138) | 59 (138) | 59 (138) | | T5 | 75 (167) | 75 (167) | 75 (167) | | T4 | 80 (176) | 65 (149) | 112 (233) | | Т3 | 78 (172) | 49 (120) | 150 (302) | | T2 | 78 (172) | 49 (120) | 150 (302) | | T1 | 78 (172) | 49 (120) | 150 (302) | Option Y\_\_\_ not with model code pos. 11: FF12 Model code: Pos. 2: T Pos. 8: 0 Pos. 10: A, E Pos. 11: JF54, JF53 Ex code: The following figure shows the relevant positions of the model code: Tab. 9: Temperature classification | Temperature class | Maximum ambient temperature in °C | | Maximum fluid temperature in °C | |-------------------|-----------------------------------|----------|---------------------------------| | | Option L | Option Y | | | T4 | 80 | _ | 118 | | T3 | 78 | _ | 150 | Model code: Pos. 2: T Pos. 8: 0 Pos. 10: B, F, K Pos. 11: \_F21, FF11 Ex code: 6.85.86.87.54.10 The following figure shows the relevant positions of the model code: Tab. 10: Temperature classification | Temperature class | Maximum ambie in °C | | Maximum fluid temperature in °C (°F) | |-------------------|---------------------|----------|--------------------------------------| | | Option L | Option Y | | | T6 | 47 (116) | 47 (116) | 66 (150) | | T5 | 62 (143) | 62 (143) | 82 (179) | | T4 | 80 (176) | 74 (165) | 118 (244) | | Т3 | 80 (176) | 70 (158) | 150 (302) | | T2 | 80 (176) | 70 (158) | 150 (302) | | T1 | 80 (176) | 70 (158) | 150 (302) | Option Y\_\_\_ not with model code pos. 11: FF11 Model code: Pos. 2: T Pos. 8: 0 Pos. 10: B, F, K Pos. 11: \_F22, FF12 Ex code: 2.78.79.81.54.10 Tab. 11: Temperature classification | Temperature class | Maximum ambie<br>in °C | ent temperature<br>(°F) | Maximum fluid temperature in °C (°F) | |-------------------|------------------------|-------------------------|--------------------------------------| | | Option L | Option Y | | | T6 | 59 (138) | 59 (138) | 59 (138) | | T5 | 75 (167) | 75 (167) | 75 (167) | | T4 | 80 (176) | 74 (165) | 112 (233) | | Т3 | 80 (176) | 70 (158) | 150 (302) | | T2 | 80 (176) | 70 (158) | 150 (302) | | T1 | 80 (176) | 70 (158) | 150 (302) | Option Y\_\_\_ not with model code pos. 11: FF12 Model code: Pos. 2: T Pos. 8: 0 Pos. 10: B, F Pos. 11: JF54, JF53 Ex code: The following figure shows the relevant positions of the model code: Tab. 12: Temperature classification | Temperature class | Maximum ambie in | ent temperature<br>°C | Maximum fluid temperature in °C | |-------------------|------------------|-----------------------|---------------------------------| | | Option L | Option Y | | | T4 | 80 | _ | 118 | | T3 | 78 | _ | 150 | # 6 Mechanical specification # 6.1 Design The Rotamass Intense flow meter is available with two design types: - Integral type, sensor and transmitter are firmly connected - Remote type - Standard neck - Long neck Fig. 18: Remote type sensor with standard and long neck | Design type | Design version | Process fluid temperature range | Model code position 10 | |---------------|-------------------|---------------------------------|------------------------| | Integral type | Direct connection | | 0, 2 | | Remote type | Standard neck | Standard | A, E, J | | | Long neck | | B, F, K | **(i)** The design influences the temperature specification for Ex-approved Rotamass, see Explosion Proof Type Manual (IM 01U10X\_\_-00\_\_-R). ### 6.2 Material ### 6.2.1 Material wetted parts The wetted parts of Rotamass Intense are available in two material versions. For corrosive fluids, use of a corrosion-resistant nickel alloy (nickel alloy C-22/2.4602) is recommended for wetted parts. | | Model code position 4 | |-----------------------------|-----------------------| | Stainless steel 1.4404/316L | S | | Nickel alloy C-22/2.4602 | Н | ### 6.2.2 Non-wetted parts Housing material of sensor and transmitter are specified via model code position 7 and position 10. # Sensor housing material | - 1 | Model code position 7 | |-----------------------------------------|-----------------------| | Stainless steel 1.4301/304, 1.4404/316L | 0 | | Stainless steel 1.4404/316L | 1 | Transmitter housing, coating and bracket material The transmitter housing is available with different coatings: - Standard coating Urethane-cured polyester powder coating - Corrosion protection coating Three-layer coating with high chemical resistance (polyurethane coating on two layers of epoxy coating) | Housing material | Coating | Design type | Model code position 10 | Bracket material | |-------------------------|-------------------------|---------------|------------------------|--------------------------------| | | Otana da ada a a tina a | Integral type | 0 | _ | | Aluminum | Standard coating | Remote type | A, B | Stainless steel<br>1.4404/316L | | Al-Si10Mg(Fe) | Corrosion | Integral type | 2 | _ | | | protection coating | Remote type | E, F | Stainless steel<br>1.4404/316L | | Stainless steel<br>CF8M | - | Remote type | J, K | Stainless steel<br>1.4404/316L | See also Design and housing [ 98]. ### Nameplate For stainless steel transmitter the nameplates are made of stainless steel 1.4404/316L. Aluminum transmitter nameplates are made of foil. In case of sensor housing material stainless steel 1.4404/316L (Model code position 7, value 1), nameplates of sensor are made of stainless steel 1.4404/316L. With other sensor housing material and with process fluid temperature range standard the sensor nameplates are made of foil, for other temperature ranges the nameplates are made of stainless steel 1.4404/316L. # 6.3 Process connections, dimensions and weights of sensor Fig. 19: Dimensions in mm Tab. 13: Dimensions without length L1 | Meter size | L2 | L3 | H1 | НЗ | H4 | H5 | H6 | W1 | W2 | |------------|--------|--------|--------|--------|---------|-------|-------|-------|-------| | | | | | in | mm (inc | :h) | | | | | Intense 34 | 272 | 212 | 177 | 279 | 80 | 138 | 218 | 60 | 80 | | | (10.7) | (8.3) | (7) | (11) | (3.1) | (5.4) | (8.6) | (2.4) | (3.1) | | Intense 36 | 400 | 266 | 230 | 279 | 80 | 138 | 218 | 76 | 90 | | | (15.7) | (10.5) | (9.1) | (11) | (3.1) | (5.4) | (8.6) | (3) | (3.5) | | Intense 38 | 490 | 267 | 268 | 289 | 100 | 148 | 228 | 89 | 110 | | | (19.3) | (10.5) | (10.6) | (11.4) | (3.9) | (5.8) | (9) | (3.5) | (4.3) | ### Overall length L1 and weight The overall length of the sensor depends on the selected process connection (type and size of flange). The following tables list the overall length and weight as functions of the individual process connection. The weights in the tables are for the remote type with standard neck. Additional weight for the remote type with long neck: 1 kg (2.2 lb). Additional weight for the integral type: 3.5 kg (7.7 lb). Process connections suitable for ASME B16.5 *Tab. 14:* Overall length L1 and weight of sensor (process connections: ASME, wetted parts: stainless steel) | Process connections | | l code<br>ition | Inten | Intense 34 | | Intense 36 | | se 38 | |--------------------------------------------|----|-----------------|-----------------------|-------------------|-----------------------|-------------------|-----------------------|-------------------| | | 5 | 6 | L1<br>in mm<br>(inch) | Weight in kg (lb) | L1<br>in mm<br>(inch) | Weight in kg (lb) | L1<br>in mm<br>(inch) | Weight in kg (lb) | | ASME ½" class<br>900, raised face<br>(RF) | | BA5 | 400<br>(15.7) | 12.6<br>(28) | _ | _ | _ | _ | | ASME ½" class<br>900, ring joint<br>(RJ) | 15 | CA5 | 400<br>(15.7) | 13<br>(29) | _ | _ | _ | _ | | ASME ½" class<br>1500, raised<br>face (RF) | 15 | BA6 | 400<br>(15.7) | 12.6<br>(28) | _ | _ | _ | _ | | ASME ½" class<br>1500, ring joint<br>(RJ) | | CA6 | 400<br>(15.7) | 13<br>(29) | _ | _ | _ | _ | | ASME 1" class<br>900, raised face<br>(RF) | | BA5 | 450<br>(17.7) | 16.4<br>(36) | 540<br>(21.3) | 20.6<br>(45) | _ | _ | | ASME 1" class<br>900, ring joint<br>(RJ) | 25 | CA5 | 450<br>(17.7) | 16.6<br>(37) | 540<br>(21.3) | 20.4<br>(45) | _ | _ | | ASME 1" class<br>1500, raised<br>face (RF) | 23 | BA6 | 450<br>(17.7) | 16.4<br>(36) | _ | _ | _ | _ | | ASME 1" class<br>1500, ring joint<br>(RJ) | | CA6 | 450<br>(17.7) | 16.6<br>(37) | _ | _ | _ | _ | | ASME 2" class<br>900, raised face<br>(RF) | 50 | BA5 | _ | _ | 660<br>(26) | 35.2<br>(78) | 720<br>(28.3) | 43<br>(95) | | ASME 2" class<br>900, ring joint<br>(RJ) | 30 | CA5 | _ | _ | 660<br>(26) | 35.6<br>(78) | 720<br>(28.3) | 43.4<br>(96) | Meaning of "-": not available Tab. 15: Overall length L1 and weight of sensor (process connections: ASME, wetted parts: Ni alloy C-22/2.4602) | Process connections | | l code<br>ition | | | se 36 | Intense 38 | | | |--------------------------------------------|----|-----------------|-----------------------|-------------------|-----------------------|-------------------|-----------------------|-------------------| | | 5 | 6 | L1<br>in mm<br>(inch) | Weight in kg (lb) | L1<br>in mm<br>(inch) | Weight in kg (lb) | L1<br>in mm<br>(inch) | Weight in kg (lb) | | ASME 1" class<br>900, raised face<br>(RF) | | BA5 | 400<br>(15.7) | 16.4<br>(36) | _ | _ | _ | _ | | ASME 1" class<br>1500, raised<br>face (RF) | 25 | BA6 | 400<br>(15.7) | 16.4<br>(36) | _ | _ | _ | _ | Meaning of "-": not available Process connections with internal thread G *Tab. 16*: Overall length L1 and weight of sensor (process connections: G thread, wetted parts: stainless steel) | Process connections | | Model code position | | Intense 34 | | Intense 36 | | Intense 38 | | |---------------------|----|---------------------|-----------------------|-------------------|-----------------------|-------------------|-----------------------|-------------------|--| | | 5 | 6 | L1<br>in mm<br>(inch) | Weight in kg (lb) | L1<br>in mm<br>(inch) | Weight in kg (lb) | L1<br>in mm<br>(inch) | Weight in kg (lb) | | | G 3/8" | 08 | | 390<br>(15.4) | 9.4<br>(21) | _ | _ | _ | _ | | | G ½" | 15 | TG9 | 390<br>(15.4) | 9.4<br>(21) | _ | _ | _ | _ | | | G ¾" | 20 | | 390<br>(15.4) | 9.4<br>(21) | _ | _ | _ | _ | | Meaning of "-": not available Process connections with internal thread NPT *Tab. 17:* Overall length L1 and weight of sensor (process connections: NPT thread, wetted parts: stainless steel) | Process connections | Model code position | | Intense 34 | | Intense 36 | | Intense 38 | | |---------------------|---------------------|-----|-----------------------|-------------------|-----------------------|-------------------|-----------------------|-------------------| | | 5 | 6 | L1<br>in mm<br>(inch) | Weight in kg (lb) | L1<br>in mm<br>(inch) | Weight in kg (lb) | L1<br>in mm<br>(inch) | Weight in kg (lb) | | NPT %" | 08 | | 390<br>(15.4) | 9.4<br>(21) | _ | _ | _ | _ | | NPT ½" | 15 | TT9 | 390<br>(15.4) | 9.4<br>(21) | _ | _ | _ | _ | | NPT 3/4" | 20 | | 390<br>(15.4) | 9.4<br>(21) | _ | _ | _ | _ | Meaning of "-": not available # 6.4 Transmitter dimensions and weights # **Transmitter** dimensions Fig. 20: Dimensions of transmitter in mm (left: transmitter with display, right: transmitter without display) Tab. 18: Overall length L1 - L4 and height H1 - H4 of transmitter (material: stainless steel, aluminum) | Material | L1 | L2 | L3 | L4 | H1 | H2 | H3 | H4 | |-----------------|---------|--------|--------|--------|--------|--------|--------|--------| | | in mm | | (inch) | Stainless steel | 255.5 | 110.5 | 69 | 235 | 201 | 184 | 24 | 150.5 | | | (10.06) | (4.35) | (2.72) | (9.25) | (7.91) | (7.24) | (0.94) | (5.93) | | Alu- | 241.5 | 96.5 | 70 | 221 | 192 | 175 | 23 | 140 | | minum | (9.51) | (3.8) | (2.76) | (8.7) | (7.56) | (6.89) | (0.91) | (5.51) | Fig. 21: Dimensions of transmitter in mm, attached to mounting bracket. # Transmitter weights | Model code (pos. 10) | Design type | | Weight in kg (lb) | |----------------------|-------------|-----------------|-------------------| | A, B, E, F | Remote | Aluminum | 4.2 (9.3) | | J, K | Remote | Stainless steel | 12.5 (27.6) | # 7 Transmitter specification Overview of functional scope of the Rotamass transmitter | | Trans | smitter | |--------------------------------------------------------|-----------|----------| | Functional scope | Essential | Ultimate | | | Essential | Ultimate | | Model code (position 1) | Е | U | | 4-line Dot-Matrix display | • | • | | Universal power supply ( $V_{DC}$ and $V_{AC}$ ) | • | • | | microSD card | • | • | | Installation | | | | Integral type | • | • | | Remote type | • | • | | Special functions | | | | Wizard | • | • | | Event management | • | • | | Total Health Check <sup>1)</sup> (diagnostic function) | • | • | | Dynamic pressure compensation <sup>3)</sup> | _ | • | | Advanced functions | | | | Features on Demand | _ | • | | Measurement of heat quantity <sup>3)</sup> | _ | • | | Net Oil Computing following API standard | _ | • | | Tube Health Check (diagnostic function) | • | • | | Batching function <sup>2)</sup> | _ | • | | Viscosity function <sup>3)</sup> | _ | • | | Inputs and outputs | | | | Analog output | • | • | | Pulse/frequency output | • | • | | Status output | • | • | | Analog input | _ | • | | Status input | • | • | | Communication | | | | HART | • | • | | Modbus | • | • | | PROFIBUS PA | _ | • | meaning of "-": not available; meaning of "•": available <sup>1)</sup> Function is based on external software (FieldMate) <sup>&</sup>lt;sup>2)</sup> Only in combination with 1 or 2 status outputs <sup>3)</sup> Only in combination with an analog input or PROFIBUS PA ### 7.1 HART and Modbus ### 7.1.1 Inputs and outputs Depending on the flow meter specification, there are different configurations of the connection terminal. Following are configuration examples of the connection terminal (value JK and M7 on model code position 13 - see *Communication type and I/O* [> 100] for details): #### **HART** I/O1: Iout1 Current output (active/passive)I/O2: P/Sout1 Pulse or status output (passive) I/O3: Sin Status input I/O4: lin Current input (active/passive) WP: Write-protect bridge #### Modbus I/O1: Iin Current input (passive) I/O2: P/Sout1 Pulse or status output (passive) I/O3-I/O4: Modbus RS485 input/output WP: Write-protect bridge ### 7.1.1.1 Output signals **Galvanic** isolation All circuits for inputs, outputs and power supply are galvanically isolated from each other. Active current output lout One or two current outputs are available depending on model code position 13. Depending on the measured value, the active current output delivers 4 – 20 mA. It may be used for output of the following measured values: - Flow rate (mass, volume, net partial component flow of a mixture) - Density - Temperature - Pressure - Concentration For HART communication devices, it is supplied on the current output *lout1*. The current output may be operated in compliance with the NAMUR NE43 standard. | | Value | |-----------------------------------------------|---------------| | Nominal output current | 4 – 20 mA | | Maximum output current range | 2.4 – 21.6 mA | | Load resistance | ≤ 750 Ω | | Load resistance for secure HART communication | 230 – 600 Ω | Fig. 22: Active current output connection lout HART ① Receiver # Passive current output *lout* | | Value | |-----------------------------------------------|---------------------------| | Nominal output current | 4 – 20 mA | | Maximum output current range | 2.4 – 21.6 mA | | External power supply | 10.5 – 32 V <sub>DC</sub> | | Load resistance for secure HART communication | 230 – 600 Ω | | Load resistance at current output | ≤ 911 Ω | Fig. 23: Maximum load resistance as a function of an external power supply voltage R Load resistance U External power supply voltage The diagram shows the maximum load resistance R as a function of voltage U of the connected voltage source. Higher load resistances are allowed with higher power supply values. The usable zone for passive power output operation is indicated by the hatched area. Fig. 24: Passive current output connection lout Analog output specification *lout* If mass- or volume flow is measured via current output *lout* two additional deviation effects have to be taken into account. - The lout –base specification ∆I<sub>base</sub> contains all combined effects of output adjustment, linearity, power supply variation, load resistance variation, short and long term drift for one year. - The lout –ambient temperature specification ΔI(T<sub>amb</sub>) gives an additional deviation effect if the ambient temperature of the transmitter differs from 20 °C. Both additional output deviation effects have to be added to the basic massflow, or volume flow deviation. They are based on a 95 % (2 $\sigma$ ) confidence level. Deviation of massor volume flow by lout The following formula can be used to calculate the deviation of mass- or volume flow: $$D_{I} = \sqrt{D^{2} + \left(\frac{\Delta I_{base}}{I(Q)} \times 100 \%\right)^{2} + \left(\frac{\Delta I(T_{amb})}{I(Q)} \times 100 \%\right)^{2}}$$ D<sub>1</sub> Maximum deviation of mass- or volume flow by lout in % D Maximum deviation of mass- or volume flow<sup>1)</sup> by pulse/frequency output in % I(Q) lout depending on mass- or volume flow in $\mu A$ $\Delta I_{\text{base}}$ Maximum deviation of lout by combined effects $\Delta I_{\text{base}} = a \times I(Q) + b$ $\Delta I(T_{amb})$ Maximum deviation of lout by deviation of the transmitter ambient tempera- ture from 20 °C $\Delta I(T_{\text{amb}}) = (c \times I(Q) + d) \times (T - 20 \text{ °C})$ a, b, c, d Constants | Description | Model code pos. 13 | a<br>in ppm | b<br>in μA | c<br>in ppm/°C | d<br>in μΑ/°C | |-------------------------------------------------|--------------------------------------------------------------------|-------------|------------|----------------|---------------| | Non-intrinsically safe lout (active or passive) | JA, JB, JC,<br>JD, JE, JF,<br>JG, JH, JJ,<br>JK, JL, JM,<br>JN, M6 | 170 | 2.3 | 7 | 0 | | Intrinsically safe lout (passive) | JP, JQ, JR,<br>JS | | | · | 0.06 | <sup>&</sup>lt;sup>1)</sup>Formula of volume flow accuracy D<sub>V</sub>, please see chapter 4.6 Volume flow accuracy [▶ 23] # Active pulse output *P/Sout* ### Connection of an electronic counter Maximum voltage and correct polarity must be observed for wiring. | | Value | |-----------------------|--------------------------| | Load resistance | > 1 kΩ | | Internal power supply | 24 V <sub>DC</sub> ±20 % | | Maximum pulse rate | 10000 pulses/s | | Frequency range | 0 – 12.5 kHz | Fig. 25: Active pulse output connection P/Sout - Load resistance - ② Electronic counter #### Connection of an electromechanical counter | | Value | |-----------------------|--------------------------| | Maximum current | 150 mA | | Average current | ≤ 30 mA | | Internal power supply | 24 V <sub>DC</sub> ±20 % | | Maximum pulse rate | 2 pulses/s | | Pulse width | 20, 33, 50, 100 ms | Fig. 26: Active pulse output P/Sout connection with electromechanical counter - ① Protective diode - ② Electromechanical counter Active pulse output P/Sout with internal pull-up resistor | | Value | |---------------------------|--------------------------| | Internal power supply | 24 V <sub>DC</sub> ±20 % | | Internal pull-up resistor | 2.2 kΩ | | Maximum pulse rate | 10000 pulses/s | | Frequency range | 0 – 12.5 kHz | Fig. 27: Active pulse output P/Sout with internal pull-up resistor ① Electronic counter # Passive pulse output P/Sout Maximum voltage and correct polarity must be observed for wiring. | | Value | |----------------------|----------------------| | Maximum load current | ≤ 200 mA | | Power supply | ≤ 30 V <sub>DC</sub> | | Maximum pulse rate | 10000 pulses/s | | Frequency range | 0 – 12.5 kHz | Fig. 28: Passive pulse output connection P/Sout with electronic counter - ① Passive pulse or status output - 2 Load resistance - ③ Electronic counter Fig. 29: Passive pulse output P/Sout connection with electromechanical counter - Passive pulse or status output - ② Protective diode - ③ Electromechanical counter Active status output P/Sout Since this is a transistor contact, maximum allowed current as well as polarity and level of output voltage must be observed during wiring. | | Value | |-----------------------|--------------------------| | Load resistance | > 1 kΩ | | Internal power supply | 24 V <sub>DC</sub> ±20 % | Fig. 30: Active status output connection P/Sout ### ① External device with load resistance Active status output P/Sout with internal pull-up resistor | | Value | |---------------------------|--------------------------| | Internal pull-up resistor | 2.2 kΩ | | Internal power supply | 24 V <sub>DC</sub> ±20 % | Fig. 31: Active status output P/Sout with internal pull-up resistor External device Passive status output P/Sout or Sout | | Value | |----------------|----------------------| | Output current | ≤ 200 mA | | Power supply | ≤ 30 V <sub>DC</sub> | Fig. 32: Passive status output connection P/Sout or Sout #### External device Fig. 33: Passive status output connection P/Sout or Sout for solenoid valve circuit - ① Relay - ② Solenoid valve - Magnetic valve power supply - ④ Protective diode A relay must be connected in series to switch alternating voltage. Passive pulse or status output *P/Sout* (NAMUR) Output signals according to EN 60947-5-6 (previously NAMUR, worksheet NA001): Fig. 34: Passive pulse or status output with switching amplifier connected in series - Passive pulse or status output - ② Switching amplifier ### 7.1.1.2 Input signals # Active current input *lin* An individual analog power input is available for external analog devices. The active current input lin is provided for connecting a two-wire transmitter with an output signal of 4-20 mA. | | Value | |-----------------------------------|--------------------------| | Nominal input current | 4 – 20 mA | | Maximum input current range | 2.4 – 21.6 mA | | Internal power supply | 24 V <sub>DC</sub> ±20 % | | Internal load resistance Rotamass | ≤ 160 Ω | Fig. 35: Connection of external device with passive current output ① External passive current output device # Passive current input *lin* The passive current input lin is provided for connecting a four-wire transmitter with an output signal of 4 - 20 mA. | | Value | |-----------------------------------|----------------------| | Nominal input current | 4 – 20 mA | | Maximum input current range | 2.4 – 21.6 mA | | Maximum input voltage | ≤ 32 V <sub>DC</sub> | | Internal load resistance Rotamass | ≤ 160 Ω | Fig. 36: Connection of external device with active current output ① External active current output device ### Status input Sin Do not connect a signal source with electric voltage. The status input is provided for use of voltage-free contacts with the following specification: | Switching status | Resistance | |------------------|------------| | Closed | < 200 Ω | | Open | > 100 kΩ | Fig. 37: Status input connection # 7.2 PROFIBUS PA # 7.2.1 Overview of functional scope | Output signal: | | | |---------------------------------|-----------------------------------------------------------------|----------| | | ication signal based on PROFIBUS PA protocol n R3.02 Compliant) | | | | block specifications: | | | <ul> <li>Transduce</li> </ul> | - | | | 1141104400 | Flow Transducer Block (FTB) | • | | | Concentration Transducer Block (CTB) | optional | | | LCD Indicator Transducer Block (LTB) | • | | | Maintenance Transducer Block (MTB) | • | | | Advanced Diagnostic Transducer Block (ADTB) | optional | | Analog Inp | out block (Al):1) | | | <u> </u> | Al1: Mass flow | • | | | AI2: Density | • | | | Al3: Temperature | • | | | Al4: Volume flow | • | | | Al5: Reference density | • | | | Al6: Corrected volume flow | • | | <ul> <li>Totalizer b</li> </ul> | lock (TOT):1) | | | | TOT1: Mass | • | | | TOT2: Volume | • | | | TOT3: Corrected volume flow | • | | - Analog out | tput block (AO):1) | | | | AO: Pressure | • | | - Profile Rev | rision R3.02: | | | | Condensed Status (NE 107) | • | | | Life Cycle Management (Automatic IDENT_NUMBER adaptation) | • | | <ul> <li>DP-V0 cycl</li> </ul> | lic data: | | | | AI x 6, TOT x 3, AO x 1 | • | | - IDENT NUM | MBER: | | | | 0x45A0 (manufacturer specific) | • | | | 0x9740, 0x9741, 0x9742 (profile specific) | • | | • GSD: | | | | | YEC45A0.gsd, pa139740.gsd, pa139741.gsd, pa139742.gsd | • | | Conditions of | Communication Line: | | | Supply voltage from the Bus: | 9 to 32 V <sub>DC</sub> | • | | Current draw: | 15 mA (maximum) | • | | Bus address s | witch: | | | via Hardware a | ddress switch or via Software | | #### Alarm selection function: These informations are indicated in DIAGNOSTICS parameter, which can be handled during normal operation. # Displayed language: In the case of PROFIBUS PA communication type, different language packages are possible to choose. meaning of ".": available ### 7.2.2 Inputs and outputs For the PROFIBUS PA version there is only one configuration of the connection terminal. Following is the configuration of the connection terminal (value G0 and G1 on model code position 13, see *Communication type and I/O [> 100]* for details): #### **PROFIBUS PA** I/O1: Fieldbus PROFIBUS PA communication I/O2: Pulse Pulse / Frequency output WP: Write-protect bridge ### 7.2.2.1 Output signals PROFIBUS PA Digital communication signal based on PROFIBUS PA protocol. Maximum voltage and correct polarity must be observed for wiring. | | Value | |--------------|-------------------------| | Power supply | 9 to 32 V <sub>DC</sub> | | Current draw | 15 mA (maximum) | Fig. 38: PROFIBUS PA connection - ① PROFIBUS PA - ② Termination - ③ DP/PA-Coupler - ④ PROFIBUS DP - ⑤ Host <sup>1)</sup> Factory default setting; can be changed by parameter "Channel". Passive pulse output (only for calibration) | | Value | |----------------------|----------------------| | Maximum load current | ≤ 200 mA | | Power supply | ≤ 30 V <sub>DC</sub> | | Maximum pulse rate | 10000 pulses/s | | Frequency range | 0 – 12.5 kHz | Fig. 39: Passive pulse output connection with electronic counter - Passive pulse - 2 Load resistance - 3 Electronic counter Fig. 40: Passive pulse output connection with electromechanical counter - Passive pulse - 2 Protective diode - ③ Electromechanical counter ### 7.3 Power supply #### **Power supply** Alternating-current voltage (rms): - Power supply<sup>1)</sup>: 24 $V_{AC}$ +20 % -15 % or 100 240 $V_{AC}$ +10 % -20 % - Power frequency: 47 63 Hz Direct-current voltage: • Power supply<sup>1)</sup>: 24 $V_{DC}$ +20 % -15 % or 100 – 120 $V_{DC}$ +8,3 % -10 % $^{1)}$ for option MC\_ (DNV GL approval) supply voltage is limited to 24 V; in addition NE21 testing indicates a tolerable area of 24 $V_{DC}$ ±20 % under NE21 test conditions. ### **Power consumption** P ≤ 10 W (including sensor) #### Power supply failure In the event of a power failure, the flow meter data are backed up on a non-volatile internal memory. In case of devices with display, the characteristic sensor values, such as nominal diameter, serial number, calibration constants, zero point, etc. and the error history are also stored on a microSD card. ### 7.4 Cable specification With the remote type, the original connecting cable from Rota Yokogawa must be used to connect the sensor with the transmitter. The connecting cable included in the delivery may be shortened. An assembly set along with the appropriate instructions are enclosed for this purpose. The connecting cable can be ordered as option in various lengths as a standard type (device options L\_\_\_) or as marine approved fire retardant cable (device options Y\_\_\_), see chapters Connecting cable type and length [> 104] and Marine approval [> 110] for details. The maximum cable length to keep the specification is 30 m (98.4 ft). Longer cables must be ordered as a separate item. For this purpose please check the "Customers Maintenance Parts List" (Ref.: CMPL 01U10B00-00EN-R) or consult our Yokogawa Service team. # 8 Advanced functions and Features on Demand (FOD) Rotamass Total Insight includes many dedicated application and maintenance functions that can be ordered simultaneously with the device or can be purchased and activated in a second time (Features on Demand). Advanced functions | | Trans | mitter | Communication type and I/O | | | | |--------------------------------------------------------|-----------|----------|----------------------------|----------------|----------------|-----------------------------------------------------------------------------------------------------| | Functional scope | Essential | Ultimate | P | Available type | | Mandatory<br>I/O | | | Essential | Ultimate | HART | Modbus | PROFIBUS<br>PA | | | Model code<br>(pos. 1 and<br>pos. 13) | Е | U | J_ | M_ | G_ | | | Net Oil<br>Computing<br>following<br>API stan-<br>dard | - | • | • | • | • | Not appli- | | Tube<br>Health<br>Check | • | • | • | • | | | | Batching function | - | • | • | - | • | 1 status<br>output for<br>one-stage<br>batching<br>2 status<br>outputs for<br>two-stage<br>batching | | Viscosity function | _ | • | • | _ | • | 1 analog input for J_ | | Measure-<br>ment of<br>heat quan-<br>tity | _ | • | • | • | _ | 1 analog input for J_ and M_ | meaning of "-": not available; meaning of "•": available # 8.1 Concentration and petroleum measurement Petroleum measurement function NOC (option C52) "NOC" is an abbreviation for the "Net Oil Computing" function that provides real-time measurements of water cut and includes "API" (American Petroleum Institute) correction according to API MPMS Chapter 11.1. Oil sometimes contains entrained gas. Rotamass Total Insight measures the density of the emulsion oil and gas that result to be lower than the oil density. If the measured density is used to calculate volume flow of oil, the result would not be correct. Therefore NOC function (option C52) includes also a Gas Void Fraction function (GVF). GVF may reduce the error in oil volume flow calculation at a minimum recognizing the occurrence of gas in the oil and using the oil density to calculate the volume flow. Oil properties can be selected using Oil type's pre-settings or using "Alpha 60". | Oil and water types predefined in the functions | | | |--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Oil types | Water types | | | <ul> <li>Crude</li> <li>Refined Products: Fuel, Jet Fuel, Transition, Gasoline</li> <li>Lubricating</li> <li>Custom Oil</li> </ul> | <ul> <li>Standard Mean Ocean Water</li> <li>UNESCO 1980</li> <li>Fresh water density by API MPMS 11.4</li> <li>Produced water density by API MPMS 20.1<br/>Appendix A.1</li> <li>Brine water density by EI-Dessouky,<br/>Ettouy (2002)</li> <li>Custom</li> </ul> | | In addition to water cut, the function can calculate: Net oil mass flow, net water mass flow, net oil volume flow, net water volume flow and net corrected oil volume flow. For details about the ordering information, see Concentration and petroleum measurement [> 105]. # 8.2 Batching function Batching and filling processes are typical applications in different industries as food and beverage, cosmetic, pharmaceutical, chemical and oil & gas. Rotamass Total Insight offers an integrated "Batching function" to automatize the task. A "self-learning" algorithm optimizes the process and allows high accurate results. The function supports two filling modes: - one-stage mode with single valve - two-stage mode to control two valves for accurate filling Without using an external flow computer, data related to the process can be transmitted via communication protocol. The error management function allows the user to set alarms and warnings accordingly the application needs. Fig. 41: One-stage mode (The above diagram illustrates the fundamental functionality for one of several combination possibilities) ① Storage tank - ③ Valve - ② Rotamass Total Insight Fig. 42: Two-stage mode (The above diagram illustrates the fundamental functionality for one of several combination possibilities) ① Storage tank 4 Valve "A" 2 Pump ⑤ Valve "B" ③ Rotamass Total Insight 6 HART For details about the ordering information, see Batching function [ 105]. # 8.3 Viscosity function The Viscosity function allows the user to have an estimation of the viscosity of the fluid. The function can be used as redundant viscosity control or as reference value to activate other processes like for instance fluid heating systems. The viscosity estimation is calculated based on a comparison between measured pressure loss $\Delta p$ and a "calculated" $\Delta p_{cal}$ between two points of the pipe nearby the flow meter (refer to related instruction manual for the correct installation). In order to use the function a pressure measurement device (separate order) directly connected to the analog input of the Rotamass Total Insight is necessary. Based on iteration process, Rotamass Total Insight finds the value of viscosity $\mu$ that returns a $\Delta p_{cal}$ closed to the measured $\Delta p$ . Fig. 43: Positioning of pressure taps - ① Heat exchanger - ② Pressure tap 1 - ③ Rotamass Total Insight - ④ Differential pressure transmitter - ⑤ Pressure tap 2 - 6 HART # **Application example:** In this application example the Viscosity function returns a reference value used to activate a heating system and the Rotamass Total Insight is using HART communication. For details about the ordering information, see Viscosity function [ 105]. ### 8.4 Tube Health Check General The Tube Health Check function is a valuable diagnostic function to evaluate the status of the measuring tubes of Rotamass Total Insight. For details about the ordering information, see *Tube Health Check* [ 108]. **Tube integrity** The function is able to measure periodically the change of the stiffness of the measuring tubes and gives the possibility to set up a real predictive maintenance system or to detect corrosion or clogging of the measuring tubes. The measurement values can be stored in the internal microSD card or transmitted via HART, Modbus or PROFIBUS PA protocol and therefore integrated in the customers condition monitoring system. An alarm or an external event can be activated directly from Potamass Total Insight in An alarm or an external event can be activated directly from Rotamass Total Insight in case the measured value exceeds a threshold defined by the user. The single measurements can be plotted in a diagram and printed in a report for quality and maintenance documentation by using the Yokogawa Device Management Software FieldMate. Dry Verification for Russia With Rotamass Total Insight and the Tube Health Check function customers in Russia can benefit from the Dry Verification procedure. The Dry Verification procedure is described in the verification method document (M $\Pi$ 208-053-2019). It determines the error of the flow measurement of the device. When Dry Verification test (tube stiffness change) results are within the required specifications it is not necessary to dispatch the flow meter to an external flow laboratory for verification. For Dry Verification please order Tube Health Check in combination with option VR. # 8.5 Measurement of heat quantity The function allows to evaluate the total fuel calorific value of the measured fluid. The function can work with a constant value of the calorific value of the fluid, but in order to have a precise evaluation we suggest to use an additional device like a gas chromatograph (not included in the supply). The external device that supplies the instantaneous calorific value is connected with the current input of the transmitter. Based on the mass flow, the total calorific energy of the fluid is calculated as below: Formula for total calorific energy $$\sum E_{cal} = \sum (Q_{m} \times H_{i} \times \Delta t)$$ $E_{cal}$ Calorific energy $Q_{m}$ Mass flow rate *H*<sub>i</sub> Calorific value variable $\Delta t$ Time interval between two measurements Other formula based on volume and corrected volume are included in the function and can be set using the display or the configuration PC software FieldMate. For details about the ordering information, see *Measurement of heat quantity* [> 109]. # 8.6 Features on Demand (FOD) In combination with the "Ultimate" transmitter, the functions can be purchased and activated later as "Features on Demand". After the order, the user receives a KeyCode for input in the transmitter. To activate the desired functions, refer to related software instruction manual (IM01U10S0...-00....-R). The options of FOD functions for Rotamass Total Insight are shown below. To order these functions refer to the related general specifications for FOD functions (GS01U10B20-00\_\_\_-R). | Option category | Options | Description | Valid from main SW rev.1) | | | | |-----------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|----------------|--| | | | | | HART | PROFIBUS<br>PA | | | Concentration and petroleum measurement | C52 | Net Oil Computing (NOC) following API standard | R1.01.01 | | R1.01.01 | | | Batching function | вт | Batching and filling function | _ | R3.01.01 | _ | | | Viscosity function | VM | Viscosity comput-<br>ing function for liq-<br>uids | | | R1.01.01 | | | Measurement of heat quantity | CGC | Measurement of<br>the total trans-<br>ported energy con-<br>tent of a fuel in<br>connection with a<br>sensor for deter-<br>mining the fuel's<br>calorific value (e.g.<br>a gas chromato-<br>graph, not included<br>in scope of<br>delivery). | R1.01.01 | R1.01.02 | R1.01.01 | | | Tube Health<br>Check | тс | Tube Health Check | R1.01.01 | R1.01.02 <sup>2)</sup> | R1.01.01 | | <sup>&</sup>lt;sup>1)</sup> Main software revision is given by the transmitter for which the FODs are intended for. For details refer to software instruction manual (IM01U10S0\_-00\_\_-R). Please be sure that your device is compatible with the selected function and in case of doubts please contact Yokogawa Service Department providing the serial number or the model code of the target device. <sup>&</sup>lt;sup>2)</sup> From HART software rev. R3.01.01 Tube Health Check includes trend line report (by FieldMate) and the possibility to store the data on microSD card. # 9 Approvals and declarations of conformity **CE** marking The Rotamass Total Insight meets the statutory requirements of the applicable EU Direc- > tives. By attaching the CE mark, Rota Yokogawa confirms conformity of the field instrument with the requirements of the applicable EU Directives. The EU Declaration of Con- formity is enclosed with the product on a data carrier. **RCM** Rotamass Total Insight meets the EMC requirements of the Australian Communications and Media Authority (ACMA). Ex approvals All data relevant for explosion protection are included in separate Explosion Proof Type Manuals. NACE Chemical composition of wetted materials 316L/316/1.4404/1.4401/1.4435 and Ni-Alloy C-22/2.4602 is conform to: ANSI / NACE-MR0175 / ISO15156-2 ANSI / NACE-MR0175 / ISO15156-3 NACE MR0103 For details please see Rota Yokogawa declaration about NACE conformity 8660001. Pressure equipment approvals The Rotamass Total Insight is in compliance with the statutory requirements of the applicable EU Pressure Equipment Directive (PED) for fluid groups 1 and 2. The customer is fully responsible of selecting proper materials which withstand corrosive or erosive conditions. In case of heavy corrosion and/or erosion the instrument may not withstand the pressure and an incident may happen with human and/or environmental harm. Yokogawa will not take any liability regarding damage caused by corrosion or erosion. If corrosion or erosion may happen, the user has to check periodically if the neces- sary wall thickness is still in place. **Functional safety** The Rotamass Total Insight with HART communication type complies with the relevant safety management requirements of IEC 61508:2010 SIL3. The Rotamass Total Insight product families can be used to implement a SIL 2 safety function (with HFT = 0) or a SIL 3 safety function (with HFT = 1) with all its 4 - 20 mA outputs. The available number of outputs depends on the model code. For further information please contact Yokogawa sales department or visit: http://www.exida.com/SAEL-Safety/yokogawa-electric-corporation-rotamass-ti-series Tab. 19: Approvals and certifications | Туре | Approval or certification | |----------|-------------------------------------------------------------------------------| | | EU Directive 2014/34/EU | | | ATEX approval: | | | DEKRA 15ATEX0023 X | | | CE <sub>0344</sub> II2G or II2(1)G or II2D or II2(1)D | | | Applied standards: | | | ■ EN 60079-0 +A11 | | | • EN 60079-1 | | | • EN 60079-7 | | | ■ EN 60079-11 | | | • EN 60079-31 | | | Remote transmitter (depending on the model code): Ex db [ia Ga] IIC T6 Gb or | | | Ex db [ia Ga] IIC T6 Gb or | | | Ex db [ia Ga] IIB T6 Gb or | | ATEX | Ex db eb [ia Ga] IIB T6 Gb Ex db [ia Ga] [ia IIC Ga] IIB T6 Gb or | | / II L/I | Ex db [ia Ga] [ia IIC Ga] IIB To Gb or | | | Ex tb [ia Da] IIIC T75 °C Db | | | Remote sensor (depending on the model code): | | | Ex ib IIC T6T1 Gb or Ex ib IIB T6T1 Gb | | | Ex ib IIIC T150 °C Db | | | Integral type (depending on the model code): | | | Ex db ib IIC T6T1 Gb or<br>Ex db eb ib IIC T6T1 Gb or | | | Ex db ib IIB T6T1 Gb or | | | Ex db eb ib IIB T6T1 Gb or | | | Ex db ib [ia Ga] IIC T6T1 Gb or Ex db eb ib [ia Ga] IIC T6T1 Gb or | | | Ex db eb ib [ia Ga] IIC 1611 Gb or | | | Ex db eb ib [ia IIC Ga] IIB T6T1 Gb | | | | | | Ex db ib [ia IIC Ga] IIB T6T1 Gb or | | Туре | Approval or certification | |-------|-------------------------------------------------------------------------------| | | IECEx approval: | | | IECEx DEK 15.0016X | | | Applied standards: | | | • IEC 60079-0 | | | • IEC 60079-1 | | | • IEC 60079-7 | | | • IEC 60079-11 | | | • IEC 60079-31 | | | Remote transmitter (depending on the model code): Ex db [ia Ga] IIC T6 Gb or | | | Ex db eb [ia Ga] IIC T6 Gb or | | | Ex db [ia Ga] IIB T6 Gb or | | | Ex db eb [ia Ga] IIB T6 Gb Ex db [ia Ga] [ia IIC Ga] IIB T6 Gb or | | IECEx | Ex db eb [ia Ga] [ia IIC Ga] IIB T6 Gb or | | | Ex tb [ia Da] IIIC T75 °C Db | | | Remote sensor (depending on the model code): Ex ib IIC T6T1 Gb or | | | Ex ib IIB T6T1 Gb of | | | Ex ib IIIC T150 °C Db | | | Integral type (depending on the model code): | | | Ex db ib IIC T6T1 Gb or<br>Ex db eb ib IIC T6T1 Gb or | | | Ex db ib IIB T6T1 Gb or | | | Ex db eb ib IIB T6T1 Gb or | | | Ex db ib [ia Ga] IIC T6T1 Gb or<br>Ex db eb ib [ia Ga] IIC T6T1 Gb or | | | Ex db ib [ia Ga] IIC T6T1 Gb of | | | Ex db eb ib [ia IIC Ga] IIB T6T1 Gb | | | Ex ib tb IIIC T150 °C Db or<br>Ex ib tb [ia Da] IIIC T150 °C Db | | | | | Туре | Approval or certification | |---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | FM<br>(CA/US) | FM approvals: US Cert No. FM16US0095X CA Cert No. FM16CA0031X Applied standards: Class 3600 Class 3610 Class 3615 Class 3616 NEMA 250 ANSI/IEC 60529 CSA-C22.2 No. 0-10 CSA-C22.2 No. 0.4-04 CSA-C22.2 No. 0.5-1982 CSA-C22.2 No. 94.1-07 CSA-C22.2 No. 94.1-07 CSA-C22.2 No. 60079-0 CAN/CSA-C22.2 No. 60079-1 CAN/CSA-C22.2 No. 60079-11 CAN/CSA-C22.2 No. 60079-11 CAN/CSA-C22.2 No. 61010-1-04 CSA-C22.2 No. 30-M1986 CSA-C22.2 No. 6529 Remote transmitter (depending on the model code): CL I, DIV 1, GP ABCD, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIC; Associated Apparatus CL I/II/III DIV 1, GP ABCDEFG; CL I ZN 0 GP IIC Entity Temperature class T6 or CL I, DIV 1, GP ABCD, CL II/III, DIV 1, GP ABCDEFG; CL I ZN 0 GP IIC Temperature class T6; Associated Apparatus CL I/II/III DIV 1, GP ABCDEFG; CL I ZN 0 GP IIC Temperature class T6 or CL I, DIV 1, GP C, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIB; Associated Apparatus CL I/II/III DIV 1, GP ABCDEFG; CL I ZN 0 GP IIC Temperature class T6 or CL I, DIV 1, GP C, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIB; Associated Apparatus CL I/II/III DIV 1, GP ABCDEFG; CL I ZN 0 GP IIB Entity Temperature class T6 or CL I, DIV 1, GP CD, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIB; Associated Apparatus CL I/II/III DIV 1, GP ABCDEFG; CL I ZN 0 GP IIB Entity Temperature class T6 Or CL I, DIV 1, GP CD, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIB; Associated Apparatus CL I/II/III DIV 1, GP ABCDEFG; CL I ZN 0 GP IIB Entity Temperature class T6 Remote sensor (depending on the model code): SC L I/II/III, DIV 1, GP ABCDEFG; CL I ZN 0, GP IIB Entity Temperature class T6 Remote sensor (depending on the model code): SC L I/II/III, DIV 1, GP ABCDEFG; CL I, ZN 0, GP IIB Entity Temperature class T6 | | Туре | Approval or certification | |-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | FM<br>(CA/US) | Integral type (depending on the model code): CL I, DIV 1, GP ABCD, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIC Temperature class T* or CL I, DIV 1, GP ABCD, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIC Associated Apparatus CL I/II/III DIV 1 GP ABCDEFG; CL I ZN 0 GP IIC Entity Temperature class T* or CL I, DIV 1, GP CD, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIB Temperature class T* or CL I, DIV 1, GP CD, CL II/III, DIV 1, GP EFG; CL I ZN 1 GP IIB Associated Apparatus CL I/II/III DIV 1 GP ABCDEFG; CL I ZN 0 GP IIC Entity Temperature class T* | | | INMETRO approval: | | INMETRO<br>(BR) | DEKRA 16.0012X Applied standards: ABNT NBR IEC 60079-0 ABNT NBR IEC 60079-1 ABNT NBR IEC 60079-7 ABNT NBR IEC 60079-31 Remote transmitter (depending on the model code): Ex db [ia Ga] IIC T6 Gb or Ex db eb [ia Ga] IIC T6 Gb or Ex db eb [ia Ga] IIB T6 Gb Ex db eb [ia Ga] IIB T6 Gb Ex db [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex db eb [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex db eb [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex db eb [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex db eb [ia Ga] [ia IIC Ga] IIB T6 Gb or | | | Remote sensor (depending on the model code): Ex ib IIC T6T1 Gb or Ex ib IIB T6T1 Gb Ex ib IIIC T150 °C Db | | | Integral type (depending on the model code): Ex db ib IIC T6T1 Gb or Ex db eb ib IIC T6T1 Gb or Ex db ib IIB T6T1 Gb or Ex db eb ib IIB T6T1 Gb or Ex db ib [ia Ga] IIC T6T1 Gb or Ex db eb ib [ia Ga] IIC T6T1 Gb or Ex db eb ib [ia IIC Ga] IIB T6T1 Gb or Ex db ib [ia IIC Ga] IIB T6T1 Gb or Ex db eb ib [ia IIC Ga] IIB T6T1 Gb Ex ib tb IIIC T150 °C Db or Ex ib tb [ia Da] IIIC T150 °C Db | | Туре | Approval or certification | |---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Applied standards: GB3836.1 GB3836.2 GB3836.3 GB3836.4 GB3836.19 GB3836.20 | | NEPSI<br>(CN) | Remote transmitter (depending on the model code): Ex db [ia Ga] IIC T6 Gb or Ex db e [ia Ga] IIC T6 Gb or Ex db [ia Ga] IIB T6 Gb or Ex db e [ia Ga] IIB T6 Gb Ex db [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex db e [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex db e [ia Ga] [ia IIC Ga] IIB T6 Gb or Ex db e [ia Ga] [ia IIC Ga] IIB T6 Gb or | | (OIV) | Remote sensor (depending on the model code): Ex ib IIC T6T1 Gb or Ex ib IIB T6T1 Gb Ex ibD 21 IP6X T150°C | | | Integral type (depending on the model code): Ex db ib IIC T6T1 Gb or Ex db e ib IIC T6T1 Gb or Ex db ib IIB T6T1 Gb or Ex db e ib IIB T6T1 Gb or Ex db ib [ia Ga] IIC T6T1 Gb or Ex db ib [ia Ga] IIC T6T1 Gb or Ex db ib [ia IIC Ga] IIB T6T1 Gb or Ex db ib [ia IIC Ga] IIB T6T1 Gb or Ex db e ib [ia IIC Ga] IIB T6T1 Gb Ex ibD 21 tD A21 IP6X T150°C or Ex [iaD 20] ibD 21 tD A21 IP6X T150°C | | Туре | Approval or certification | |-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | PESO approval: PESO approval is based on ATEX certification by DEKRA | | | Certificate Number: | | | DEKRA 15ATEX0023 X | | | PESO approval is only valid for type of protection "d" flameproof enclosure. Option Q11 must be ordered for conformity of device with PESO requirements. | | | Equipment Reference Numbers: | | | P434956/_ | | | P434884/_ | | | P434885/_ | | | P431901/_ | | | P431875/_ | | | P432033/_ | | | P434983/_ | | PESO | P434957/ | | (IN) | P434887/ | | | Applied standards: | | | ■ EN 60079-0 +A11 | | | ■ EN 60079-1 | | | • EN 60079-11 | | | Remote transmitter (depending on the model code): | | | Ex db [ia Ga] IIC T6 Gb or<br>Ex db [ia Ga] IIB T6 Gb or | | | Ex db [ia Ga] [ia IIC Ga] IIB T6 Gb | | | Remote sensor (depending on the model code): | | | Ex ib IIC T6T1 Gb or<br>Ex ib IIB T6T1 Gb | | | | | | Integral type (depending on the model code): Ex db ib IIC T6T1 Gb or | | | Ex db ib IIB T6T1 Gb or | | | Ex db ib [ia Ga] IIC T6T1 Gb or<br>Ex db ib [ia IIC Ga] IIB T6T1 Gb | | | Please refer to IECEx approval for specifications. A device with IECEx ap- | | Safety Label (TW) | proval (model code position 11, value: SF2_) must be ordered to comply with Safety Label requirements. For export to Taiwan and to get the Safety Label the Yokogawa representative in Taiwan must be contacted in advance. | | | Identification Number: | | | TD04000C | | Туре | Approval or certification | |----------|-------------------------------------------------------------------| | . , , , | Korea Ex certificates: | | | ■ 18-KA4BO-0507X | | | ■ 18-KA4BO-0508X | | | ■ 18-KA4BO-0513X | | | ■ 18-KA4BO-0526X | | | ■ 18-KA4BO-0509X | | | ■ 18-KA4BO-0510X | | | ■ 18-KA4BO-0539X | | | ■ 18-KA4BO-0540X | | | ■ 18-KA4BO-0541X | | | ■ 18-KA4BO-0681X | | | ■ 18-KA4BO-0542X | | | ■ 18-KA4BO-0682X | | | ■ 18-KA4BO-0527X | | | ■ 18-KA4BO-0528X | | | ■ 18-KA4BO-0531X | | | ■ 18-KA4BO-0532X | | | ■ 18-KA4BO-0533X | | | ■ 18-KA4BO-0534X | | | ■ 18-KA4BO-0537X | | | ■ 18-KA4BO-0538X | | | Applied standards: | | | Notice of Ministry of Labor No 2016-54 harmonized with | | Korea Ex | ■ IEC 60079-0 | | | ■ IEC 60079-1 | | | • IEC 60079-7 | | | ■ IEC 60079-11 | | | • IEC 60079-31 | | | Remote transmitter (depending on the model code): | | | Ex d [ia] IIC T6 Ex d e [ia] IIC T6 | | | Ex d [ia] IIB T6 | | | Ex d e [ia] IIB T6 | | | Ex d [ia] [ia IIC] IIB T6 | | | Ex d e [ia] [ia IIC] IIB T6<br>Ex tb [ia] IIIC T75 °C | | | Remote sensor (depending on the model code): | | | Ex ib IIB T6T1 | | | Ex ib IIC T6T1 | | | Ex ib IIIC T150 °C | | | Integral type (depending on the model code): Ex d ib IIC T6T1 or | | | Ex d e ib IIC T6T1 or | | | Ex d ib [ia] IIC T6T1 or | | | Ex d e ib [ia] IIC T6T1 or<br>Ex d ib IIB T6T1 or | | | Ex d ib IIB 1611 of<br>Ex d e ib IIB T6T1 | | | Ex d ib [ia IIC] IIB T6T1 or | | | Ex d e ib [ia IIC] IIB T6T1 or | | | Ex ib tb IIIC T150 °C or<br>Ex ib tb [ia] IIIC T150 °C | | | EX ID tO [Id] IIIC 1 130 C | | Туре | Approval or certification | |--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Certificate Number: | | | RU C-DE.AA71.B.00517 | | | Applied standards: | | | • Gost 31610.0 (IEC 60079-0) | | | • Gost IEC 60079-1 | | | • Gost 31610.7 (IEC 60079-7) | | | • Gost 31610.11 (IEC 60079-11) | | | <ul> <li>Gost IEC 60079-31</li> </ul> | | | • Gost IEC 60079-14 | | EAC Ex | Remote transmitter (depending on the model code): 1Ex db [ia Ga] IIC T6 Gb X or 1Ex db e [ia Ga] IIC T6 Gb X or 1Ex db [ia Ga] IIB T6 Gb X or 1Ex db e [ia Ga] IIB T6 Gb X 1Ex db [ia Ga] [ia IIC Ga] IIB T6 Gb X or 1Ex db e [ia Ga] [ia IIC Ga] IIB T6 Gb X or 1Ex db e [ia Ga] [ia IIC Ga] IIB T6 Gb X or | | | Remote sensor (depending on the model code): | | | 1Ex ib IIC T6T1 Gb X or | | | 1Ex ib IIB T6T1 Gb X or<br>1Ex ib IIIC T200 °C Db X | | | Integral type (depending on the model code): 1Ex db ib IIC T6T1 Gb X or 1Ex db e ib IIC T6T1 Gb X or 1Ex db ib IIB T6T1 Gb X or 1Ex db e ib IIB T6T1 Gb X or 1Ex db ib [ia Ga] IIC T6T1 Gb X or 1Ex db e ib [ia Ga] IIC T6T1 Gb X or 1Ex db e ib [ia IIC Ga] IIB T6T1 Gb X or 1Ex db ib [ia IIC Ga] IIB T6T1 Gb X or 1Ex db e ib [ia IIC Ga] IIB T6T1 Gb X 1Ex ib tb [ia IIC T150 °C Db X or | | | Japan Ex certificates: | | | • DEK 18.0051 X | | | • DEK 18.0058 X | | | • DEK 18.0067 X | | | <ul> <li>DEK 18.0076 X</li> <li>DEK 18.0087 X</li> </ul> | | | Applied standards: | | Japan Fy | JNIOSH-TR-46-1 : 2015 | | Japan Ex | JNIOSH-TR-46-2 : 2018 | | | JNIOSH-TR-46-6 : 2015 | | | Remote transmitter (depending on the model code):<br>Ex db [ia Ga] IIC T6 Gb | | | Remote sensor (depending on the model code):<br>Ex ib IIC T4T3 Gb | | | Integral type (depending on the model code): Ex db ib IIC T4T3 Gb | | Ingress protection | IP66/67 and NEMA 4X | | Туре | Approval or certification | |-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | EU directive 2014/30/EU per EN 61326-1 Class A Table 2 and EN 61326-2-3 | | EM0 | NAMUR NE21 | | EMC | RCM in Australia/New Zealand | | | KC mark in Korea | | | TR CU 020 in EAEU area | | | EU directive 2014/35/EU per: | | LVD | ■ EN 61010-1 | | LVD | ■ EN 61010-2-030 | | | TR CU 004 in EAEU area | | PED | EU directive 2014/68/EU per AD 2000 Code | | I LD | TR CU 032 in EAEU area | | Marine | DNV GL Type approval according to DNVGL-CP-0338 for options MC2 and MC3 $$ | | RoHS | EU directive 2011/65/EU per EN 50581 | | | EU directive 2012/19/EU (Waste Electrical and Electronic Equipment) is only valid in the European Economic Area. | | WEEE | This instrument is intended to be sold and used only as a part of equipment which is excluded from the WEEE directive, such as large-scale stationary industrial tools, a large-scale fixed installation etc., and therefore it is in principle fully compliant with WEEE directive. The instrument should be disposed of in accordance with applicable national legislations or regulations, respectively. | | SIL | Exida Certifcate per IEC61508:2010 Parts 1-7 SIL 2 @ HFT=0; SIL 3 @ HFT =1 | | NAMUR | NAMUR NE95 compliant | | | Rotamass Total Insight is registered as a measuring instrument in the following countries: | | Matralagiaal | - China | | Metrological<br>Regulations | Russia Relevie | | . togalationo | Belarus Places contact your Yelkogowa representative regarding respective "Det | | | Please contact your Yokogawa representative regarding respective "Pattern Approval Certificate of Measuring Instruments" and for export to these countries. | | | | | IGC | Intergranular Corrosion testing according to EN ISO 3651-2 and ASTM for option P6 | # 10 Ordering information # 10.1 Overview model code Intense 34 | Model code position | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | Description | Restrictions | |---------------------|-------|--------|--------|----|----|----|----|----|----|-----|-----|-----|-----|-----|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------| | Transmitter | E | | | | | | | | | | | | | | Essential (base function) | not with accuracy C2, C3, 50 not with communication type and I/O JH, JJ, JK, JL, JM, JN, M2, M7, G_ not with option CGC, C52, BT, VM | | - | U | | | | | | | | | | | | | | Ultimate (high function) | not with accuracy D7, 70 not with display 0 | | | N | | | | | | | | | | | | | | Spare sensor without transmitter, combinable with Rotamass TI transmitter | see restrictions below | | Sensor | | Т | | | | | | | | | | | | | Intense | _ | | Meter size | | | 34 | | | | | | | | | | | | Nominal mass flow : 3 t/h (110 lb/min)<br>Maximum mass flow: 5 t/h (180 lb/min) | not with option FE | | | | | | S | | | | | | | | | | | Stainless steel 1.4404/316L | _ | | Material wetted | l par | ts | | Н | | | | | | | | | | | Ni alloy C-22/2.4602 | not with option RT, RTA, MC_, P2_ | | | | | | | 08 | | | | | | | | | | 3/8" | | | _ | | | | | 15 | | | | | | | | | | 1/2" | | | Process connec | ctior | ı sıze | | | 20 | | | | | | | | | | 3/4" | - | | | | | | | 25 | | | | | | | | | | 1" | | | | | | | | | ВА | 5 | | | | | | | | ASME flange class 900, suitable for ASME B16.5, raised face (RF) | | | | | | | | | CA | .5 | | | | | | | | ASME flange class 900, suitable for ASME B16.5, ring joint (RJ) | | | Process connec | ctior | tvpe | : | | | ВА | .6 | | | | | | | | ASME flange class 1500, suitable for ASME B16.5, raised face (RF) | see tables on page [ 41] | | | | ,,,, | | | | CA | .6 | | | | | | | | ASME flange class 1500, suitable for ASME B16.5, ring joint (RJ) | | | | | | | | | TG | 9 | | | | | | | | Process connection with internal thread G | not with option WPA, RTA, PTA, P2_ | | | | | | | | TT | 9 | | | | | | | | Process connection with internal thread NPT | see tables on page [▶ 42] | | | | | | | | | 0 | | | | | | | | Stainless steel 1.4301/304, 1.4404/316L | _ | | Sensor housing | g ma | terial | | | | | 1 | | | | | | | | Stainless steel 1.4404/316L | not with Ex Approval JF53,<br>JF54 | | Process fluid te | empe | eratur | e ran | ge | | | | 0 | | | | | | | Standard, integral type: -50 – 150 °C (-58 – 302 °F), remote type: -70 – 150 °C (-94 – 302 °F) | _ | | | | | | | | | | | E7 | | | | | | Liquid: 0.2 % maximum mass flow deviation $D_{\text{flat}}$ 4 g/l density deviation | not with transmitter N | | | | | | | | | | | D7 | | | | | | Liquid: 0.15 % maximum mass flow deviation $D_{\text{flat}},4$ g/l density deviation | not with transmitter U | | Mass flow and | dens | sitv a | CCLICS | CV | | | | | СЗ | | | | | | Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},1$ g/l density deviation | only with transmitter U not with option RT, RTA, P2_ | | mass now drid t | uurk | only a | ooura | ∪y | | | | | C2 | | | | | | Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},0.5\text{ g/I}$ density deviation | not with transmitter E not with option RT, RTA, P2 | | | | | | | | | | | 70 | | | | | | Gas: 0.75 % maximum mass flow deviation D <sub>flat</sub> | only with transmitter E | | | | | | | | | | | 50 | | | | | | Gas: 0.5 % maximum mass flow deviation D <sub>flat</sub> | not with transmitter E | | | | | | | | | | | | | | | | | | not with option C52, VM | | Model code | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | Description | Restrictions | |---------------|------|----|----|----|----|----|----|----|----|-----|------|-----|-----|-----|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------| | position | | | | | | | | | | 0 | | | | | Integral type with "urethane-cured polyester powder coating" coated aluminum transmitter housing | not with communication type and I/O NN | | | | | | | | | | | | 2 | | | | | Integral type with "corrosion protection coating" coated aluminum transmitter housing | not with option L, MC_, | | | | | | | | | | | | A | | | | | Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and standard neck sensor | not with option RB | | | | | | | | | | | | В | | | | | Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and long neck sensor | not with option RB | | Design and h | ousi | ng | | | | | | | | E | | | | | Remote type with "corrosion protection coating" coated aluminum transmitter housing and standard neck sensor | not with communication type and I/O NN not with option RB | | | | | | | | | | | | F | | | | | Remote type with "corrosion protection coating" coated aluminum transmitter housing and long neck sensor | not with option RB | | | | | | | | | | | | J | | | | | Remote type stainless steel transmitter and standard neck sensor | not with Ex approval KF21,<br>SF21, GF21, UF21, NF21,<br>PF21, JF5_ | | | | | | | | | | | | K | | | | | Remote type stainless steel transmitter and long neck sensor | not with option RB<br>not with Ex approval KF21,<br>SF21, GF21, UF21, NF21,<br>PF21,JF5_ | | | | | | | | | | | | | | | | | | not with option RB | | | | | | | | | | | | | NN00 | ) | | | None | not with communication type and I/O JP, JQ, JR, JS | | | | | | | | | | | | | KF21 | | | | ATEX, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | KF22 | | | | ATEX, explosion group IIB and IIIC | - | | | | | | | | | | | | | SF21 | | | | IECEx, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | SF22 | | | | IECEx, explosion group IIB and IIIC | | | | | | | | | | | | | | GF21 | | | | EAC Ex, explosion group IIC and IIIC | not with design and housing J, K only with option VB, VE or VR | | | | | | | | | | | | | GF22 | ! | | | EAC Ex, explosion group IIB and IIIC | only with option VB, VE or VR | | | | | | | | | | | | | FF11 | | | | FM, groups A, B, C, D, E, F, G | not with transmitter N, cable entries 4, communication type and I/O G_ | | Ex approval | | | | | | | | | | | FF12 | | | | FM, groups C, D, E, F, G | not with option KC, VB, VE, VR, Y<br>not with process connection type TG9, TT9 | | | | | | | | | | | | | UF21 | | | | INMETRO, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | UF22 | | | | INMETRO, explosion group IIB and IIIC | | | | | | | | | | | | | | NF21 | | | | NEPSI, explosion group IIC and IIIC | not with design and housing J, K only with option CN | | | | | | | | | | | | | NF22 | | | | NEPSI, explosion group IIB and IIIC | only with option CN | | | | | | | | | | | | | PF21 | | | | Korea Ex, explosion group IIC and IIIC | not with design and housing J, K only with option KC | | | | | | | | | | | | | PF22 | | | | Korea Ex, explosion group IIB and for integral type also IIIC | only with option KC | | | | | | | | | | | | | JF53 | | | | Japan Ex, Temperature class T3, explosion group IIC | not with transmitter N, design<br>and housing J, K, cable en-<br>tries 2, communication type<br>and I/O JP, JQ, JR, JS, G1,<br>display 0 | | | | | | | | | | | | | JF54 | | | | Japan Ex, Temperature class T4, explosion group IIC | only with option PJ and V52<br>or V53 | | | | | | | | | | | | | | 2 | | | ANSI ½" NPT | not with option Y<br>not with Ex approval JF5_ | | Cable entries | | | | | | | | | | | | 4 | | | ISO M20x1.5 | not with Ex approval FF11, | | | | | | | | | | | | | | 7 | | | IOO IVIZUAT.J | FF12 | | Model code | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | Description | Restrictions | |---------------|-------|-------|-------|----|----|----|----|----|----|-----|-----|-----|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------| | | | | | | | | | | | | | | JA | | 1 active current output HART,<br>1 passive pulse or status output | | | | | | | | | | | | | | | | JB | | 2 active current outputs one with HART,<br>2 passive pulse or status outputs | | | | | | | | | | | | | | | | JC | | 2 active current outputs one with HART,<br>1 passive pulse or status output,<br>1 voltage-free status input | | | | | | | | | | | | | | | | JD | | 1 active current output HART,<br>2 passive pulse or status outputs,<br>1 passive status output | | | | | | | | | | | | | | | | JE | | 1 active current output HART,<br>2 passive pulse or status outputs,<br>1 voltage-free status input | not with option CGC, VM | | | | | | | | | | | | | | | JF | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 active pulse or status output with pull-up resistor,<br>1 voltage-free status input | | | | | | | | | | | | | | | | JG | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 active pulse or status output,<br>1 voltage-free status input | | | Communication | on ty | pe an | d I/O | | | | | | | | | | JH | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 passive current output,<br>1 active current input | | | | | | | | | | | | | | | | JJ | | 1 active current output HART,<br>2 passive pulse or status outputs,<br>1 active current input | | | | | | | | | | | | | | | | JK | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 voltage-free status input,<br>1 active current input | not with transmitter E | | | | | | | | | | | | | | | JL | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 passive current output,<br>1 passive current input | not with transmitted E | | | | | | | | | | | | | | | JM | | 1 active current output HART,<br>2 passive pulse or status outputs,<br>1 passive current input | | | | | | | | | | | | | | | | JN | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 voltage-free status input,<br>1 passive current input | | | Model code | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | Description | Restrictions | |-------------|--------|-------|-------|----|----|----|----|----|----|-----|-----|-----|-----|-----|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------| | position | | | | | | | | | | | | | JP | | 2 passive current outputs one with HART, | | | | | | | | | | | | | | | | JP | | 1 passive pulse or status output | | | | | | | | | | | | | | | | JQ | | 2 passive current outputs one with HART,<br>2 passive pulse or status outputs | not with Ex approval NN00, JF5_ | | | | | | | | | | | | | | | JR | | 2 passive current outputs one with HART,<br>1 passive NAMUR pulse or status output | not with option CGC, MC_, VM | | | | | | | | | | | | | | | JS | | 2 passive current outputs one with HART,<br>2 passive NAMUR pulse or status outputs | _ | | | | | | | | | | | | | | | MO | | Modbus output,<br>1 passive pulse or status output | not with option CGC, PS, BT, VM | | | | | | | | | | | | | | | M2 | | Modbus output, 1 passive pulse or status output, 1 active current input | not with transmitter E not with option PS, BT, VM | | | | | | | | | | | | | | | МЗ | | Modbus output,<br>2 passive pulse or status outputs | | | | | | | | | | | | | | | | M4 | | Modbus output, 1 passive pulse or status output, 1 active pulse or status output | | | | | | | | | | | | | | | | M5 | | Modbus output, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor | not with option CGC , PS,<br>BT, VM | | Communicati | on typ | e and | d I/O | | | | | | | | | | M6 | | Modbus output, 1 passive pulse or status output, 1 active current output | | | | | | | | | | | | | | | | | | Modbus output, | not with transmitter E | | | | | | | | | | | | | | | M7 | | 1 passive pulse or status output,<br>1 passive current input | not with option PS, BT, VM | | | | | | | | | | | | | | | | | | not with transmitter E | | | | | | | | | | | | | | | G0 | | PROFIBUS PA,<br>1 passive pulse output | not with Ex Approval FF11, FF12 | | | | | | | | | | | | | | | | | | not with option PS, BT, MC_ | | | | | | | | | | | | | | | | | | not with transmitter E | | | | | | | | | | | | | | | G1 | | PROFIBUS PA, intrinsically safe, | not with Ex Approval NN00, FF11, FF12, JF5_ | | | | | | | | | | | | | | | | | 1 passive pulse output | not with option PS, Q11, BT, MC_ | | | | | | | | | | | | | | | | | | only with transmitter N | | | | | | | | | | | | | | | NN | | Spare sensor without transmitter, all communication types and I/Os apply | not with design and housing 0, 2, Ex Approval FF11, FF12, JF5_ | | | | | | | | | | | | | | | | | | not with option VB, VR | | | | | | | | | | | | | | | | 0 | No display | only with transmitter E | | | | | | | | | | | | | | | | 0 | 140 display | not with option JF5_ | | | | | | | | | | | | | | | | 1 | With display | not with transmitter N | | Display | | | | | | | | | | | | | | | | only with transmitter N | | | | | | | | | | | | | | | | N | Spare sensor without transmitter, no display applied | not with Ex Approval FF11, FF12, JF5_ | | | | | | | | | | | | | | | | | | not with option VB, VR | ## 10.2 Overview model code Intense 36 | Model code | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | Description | Restrictions | |------------------|--------|--------|-------|----|----|----|------------|----|----|-----|-----|-----|-----|-----|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------| | position | | | | | | | | | | | | | | | | not with accuracy C2, C3, 50 | | | E | | | | | | | | | | | | | | Essential (base function) | not with communication type<br>and I/O JH, JJ, JK, JL, JM,<br>JN, M2, M7, G_ | | Transmitter | | | | | | | | | | | | | | | | not with option CGC, C52,<br>BT, VM | | | U | | | | | | | | | | | | | | Ultimate (high function) | not with accuracy D7, 70<br>not with display 0 | | | N | | | | | | | | | | | | | | Spare sensor without transmitter, combinable with Rotamass TI transmitter | see restrictions below | | Sensor | | Т | | | | | | | | | | | | | Intense | _ | | Meter size | | | 36 | | | | | | | | | | | | Nominal mass flow : 10 t/h (370 lb/min) Maximum mass flow: 17 t/h (620 lb/min) | _ | | Material wetted | l part | s | | s | | | | | | | | | | | Stainless steel 1.4404/316L | _ | | material wetter | , puit | | | | 25 | | | | | | | | | | 1" | | | Process conne | ction | size | | | 50 | | | | | | | | | | 2" | - | | | | | | | | BA | <b>\</b> 5 | | | | | | | | ASME flange class 900, suitable for ASME B16.5, raised face (RF) | | | Process conne | ction | type | | | | CA | 45 | | | | | | | | ASME flange class 900, suitable for ASME B16.5, ring joint (RJ) | see tables on page [> 41] | | Process fluid to | empe | rature | e ran | ge | | | | 0 | | | | | | | Standard, integral type: -50 – 150 °C (-58 – 302 °F), remote type: -70 – 150 °C (-94 – 302 °F) | _ | | | | | | | | | 0 | | | | | | | | Stainless steel 1.4301/304, 1.4404/316L | _ | | Sensor housing | g mat | erial | | | | | 1 | | | | | | | | Stainless steel 1.4404/316L | not with Ex Approval JF53,<br>JF54 | | | | | | | | | ' | | E7 | | | | | | Liquid: 0.2 % maximum mass flow deviation $D_{\text{flat}},$ 4 g/l density deviation | not with transmitter N | | | | | | | | | | | D7 | | | | | | Liquid: 0.15 % maximum mass flow deviation $D_{\text{flat}},4$ g/l density deviation | not with transmitter U | | Mass flow and | dens | itv ac | cura | CV | | | | | C3 | | | | | | Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},1$ g/l density deviation | only with transmitter U | | Wass now and | uciis | ity ac | cura | Су | | | | | C2 | | | | | | Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},0.5\text{ g/I}$ density deviation | not with transmitter E | | | | | | | | | | | 70 | | | | | | Gas: 0.75 % maximum mass flow deviation D <sub>flat</sub> | only with transmitter E | | | | | | | | | | | 50 | | | | | | Gas: 0.5 % maximum mass flow deviation D <sub>flat</sub> | not with transmitter E | | | | | | | | | | | 30 | | | | | | Gas. 0.5 /6 maximum mass now deviation D <sub>flat</sub> | not with option C52, VM | | | | | | | | | | | | 0 | | | | | Integral type with "urethane-cured polyester powder coating" coated aluminum transmitter housing | not with communication type and I/O NN | | | | | | | | | | | | 2 | | | | | Integral type with "corrosion protection coating" coated aluminum transmitter housing | not with option L, MC_, | | | | | | | | | | | | A | | | | | Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and standard neck sensor | not with option RB | | | | | | | | | | | | В | | | | | Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and long neck sensor | not with option RB | | Design and he | | | | | | | | | | E | | | | | Remote type with "corrosion protection coating" coated aluminum transmitter housing and standard neck sensor | not with communication type and I/O NN | | Design and ho | using | | | | | | | | | | | | | | 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | not with option RB | | | | | | | | | | | | F | | | | | Remote type with "corrosion protection coating" coated aluminum transmitter housing and long neck sensor | not with option RB | | | | | | | | | | | | J | | | | | Remote type stainless steel transmitter and standard neck sensor | not with Ex approval KF21,<br>SF21, GF21, UF21, NF21,<br>PF21, JF5_ | | | | | | | | | | | | | | | | | | not with option RB | | | | | | | | | | | | K | | | | | Remote type stainless steel transmitter and long neck sensor | not with Ex approval KF21,<br>SF21, GF21, UF21, NF21,<br>PF21,JF5_ | | | | | | | | | | | | | | | | | | not with option RB | | Model code | 1. | 2. | 3. | 4. | 5. | 6. | 7. | . 8 | 3. | 9. | 10. | 11. | 12. | 13. | 14. | Description | Restrictions | |---------------|----|----|----|----|----|----|----|-----|----|----|-----|------|-----|-----|-----|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------| | position | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NNO | 0 | | | None | not with communication type and I/O JP, JQ, JR, JS | | | | | | | | | | | | | | KF2 | 1 | | | ATEX, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | | KF2 | 2 | | | ATEX, explosion group IIB and IIIC | - | | | | | | | | | | | | | | SF2 | 1 | | | IECEx, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | | SF2 | 2 | | | IECEx, explosion group IIB and IIIC | | | | | | | | | | | | | | | GF2 | 1 | | | EAC Ex, explosion group IIC and IIIC | not with design and housing J, K only with option VB, VE or VR | | | | | | | | | | | | | | GF2 | 2 | | | EAC Ex, explosion group IIB and IIIC | only with option VB, VE or VR | | | | | | | | | | | | | | FF1 | 1 | | | FM, groups A, B, C, D, E, F, G | not with transmitter N, cable entries 4, communication type and I/O G_ | | | | | | | | | | | | | | FF1: | | | | FM | not with option KC, VB, VE, VR, Y | | Ex approval | | | | | | | | | | | | FF1. | | | | FM, groups C, D, E, F, G | not with process connection<br>type TG9, TT9 | | Ex approval | | | | | | | | | | | | UF2 | 1 | | | INMETRO, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | | UF2 | 2 | | | INMETRO, explosion group IIB and IIIC | | | | | | | | | | | | | | | NF2 | 1 | | | NEPSI, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | | | | | | | only with option CN | | | | | | | | | | | | | | NF2 | 2 | | | NEPSI, explosion group IIB and IIIC | only with option CN | | | | | | | | | | | | | | PF2 | 1 | | | Korea Ex, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | | | | | | | only with option KC | | | | | | | | | | | | | | PF2 | 2 | | | Korea Ex, explosion group IIB and for integral type also IIIC | only with option KC | | | | | | | | | | | | | | JF53 | 3 | | | Japan Ex, Temperature class T3, explosion group IIC | not with transmitter N, design<br>and housing J, K, cable en-<br>tries 2, communication type<br>and I/O JP, JQ, JR, JS, G1,<br>display 0 | | | | | | | | | | | | | | JF54 | 1 | | | Japan Ex, Temperature class T4, explosion group IIC | only with option PJ and V52<br>or V53 | | | | | | | | | | | | | | | | | | | not with option Y | | | | | | | | | | | | | | | 2 | | | ANSI 1/2" NPT | not with Ex approval JF5_ | | Cable entries | | | | | | | | | | | | | 4 | | | ISO M20x1.5 | not with Ex approval FF11, FF12 | | Model code position | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | Description | Restrictions | |---------------------|--------|-------|-------|----|----|----|----|----|----|-----|-----|-----|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------| | position | | | | | | | | | | | | | JA | | 1 active current output HART,<br>1 passive pulse or status output | | | | | | | | | | | | | | | | JB | | 2 active current outputs one with HART,<br>2 passive pulse or status outputs | | | | | | | | | | | | | | | | JC | | 2 active current outputs one with HART,<br>1 passive pulse or status output,<br>1 voltage-free status input | | | | | | | | | | | | | | | | JD | | 1 active current output HART,<br>2 passive pulse or status outputs,<br>1 passive status output | | | | | | | | | | | | | | | | JE | | 1 active current output HART,<br>2 passive pulse or status outputs,<br>1 voltage-free status input | not with option CGC, VM | | | | | | | | | | | | | | | JF | | 1 active current output HART, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor, 1 voltage-free status input | | | | | | | | | | | | | | | | JG | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 active pulse or status output,<br>1 voltage-free status input | | | Communicatio | on typ | e and | d I/O | | | | | | | | | | JH | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 passive current output,<br>1 active current input | | | | | | | | | | | | | | | | JJ | | 1 active current output HART,<br>2 passive pulse or status outputs,<br>1 active current input | | | | | | | | | | | | | | | | JK | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 voltage-free status input,<br>1 active current input | not with transmitter E | | | | | | | | | | | | | | | JL | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 passive current output,<br>1 passive current input | not with transmitter E | | | | | | | | | | | | | | | JM | | 1 active current output HART,<br>2 passive pulse or status outputs,<br>1 passive current input | | | | | | | | | | | | | | | | JN | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 voltage-free status input,<br>1 passive current input | | | Model code | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | Description | Restrictions | |---------------|----------------------------|----|----|----|----|----|----|----|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------| | position | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | JP | | 2 passive current outputs one with HART,<br>1 passive pulse or status output | | | | | | | | | | | | | | | | JQ | | 2 passive current outputs one with HART,<br>2 passive pulse or status outputs | not with Ex approval NN00, JF5_ | | | | | | | | | | | | | | | JR | | 2 passive current outputs one with HART,<br>1 passive NAMUR pulse or status output | not with option CGC, MC_,<br>VM | | | | | | | | | | | | | | | JS | | 2 passive current outputs one with HART,<br>2 passive NAMUR pulse or status outputs | | | | | | | | | | | | | | | | МО | | Modbus output,<br>1 passive pulse or status output | not with option CGC, PS, BT<br>VM | | | | | | | | | | | | | | | M2 | | Modbus output, 1 passive pulse or status output, 1 active current input | not with transmitter E<br>not with option PS, BT, VM | | | | | | | | | | | | | | | МЗ | | Modbus output,<br>2 passive pulse or status outputs | | | | | | | | | | | | | | | | M4 | | Modbus output, 1 passive pulse or status output, 1 active pulse or status output | | | | ı | | | | | | M5 | | Modbus output, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor | not with option CGC , PS, BT, VM | | | | | | | | Communication | communication type and I/O | | | | | | | | | M6 | | Modbus output, 1 passive pulse or status output, 1 active current output | | | | | | | | | | | | | | | | | | | M7 | | Modbus output, 1 passive pulse or status output, 1 passive current input | not with transmitter E not with option PS, BT, VM | | | | | | | | | | | | | | | | | | not with transmitter E | | | | | | | | | | | | | G0 | | PROFIBUS PA,<br>1 passive pulse output | not with Ex Approval FF11, FF12 | | | | | | | | | | | | | | | | | | | | not with option PS, BT, MC_ | | | | | | | | | | | | | | | | | | not with transmitter E | | | | | | | | | | | | | | | G1 | | PROFIBUS PA, intrinsically safe, | not with Ex Approval NN00, FF11, FF12, JF5_ | | | | | | | | | | | | | | | | | 1 passive pulse output | not with option PS, Q11, BT, MC_ | | | | | | | | | | | | | | | | | | only with transmitter N | | | | | | | | | | NN | | Spare sensor without transmitter, all communication types and I/Os apply | not with design and housing<br>0, 2, Ex Approval FF11,<br>FF12, JF5_ | | | | | | | | | | | | | | | | | | | | | | | not with option VB, VR | | | | | | | | | | | | | | | | | No display | only with transmitter E | | | | | | | | | | | | | | | | 0 | No display | not with option JF5_ | | | | | | | | | | | | | | | | 1 | With display | not with transmitter N | | Display | | | | | | | | | | | | | | | | only with transmitter N | | | | | | | | | | | | | N | Spare sensor without transmitter, no display applied | not with Ex Approval FF11, FF12, JF5_ | | | | | | | | | | | | | | | not with option VB, VR | | | | | | | ## 10.3 Overview model code Intense 38 | Model code position | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | Description | Restrictions | |---------------------|----------------------------|------------------|-------|-----|----|----|----|----|----|-----|--------------------------|---------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------| | Transmitter | E | | | | | | | | | | | | | | Essential (base function) | not with accuracy C2, C3, 50 not with communication type and I/O JH, JJ, JK, JL, JM, JN, M2, M7, G_ not with option CGC, C52, BT, VM | | | U | Ultimate (high t | | | | | | | | | Ultimate (high function) | not with accuracy D7, 70 not with display 0 | | | | | | | N | | | | | | | | | | | | | | Spare sensor without transmitter, combinable with Rotamass TI transmitter | see restrictions below | | Sensor | | Т | | | | | | | | | | | | | Intense | - | | Meter size | | | 38 | | | | | | | | | | | | Nominal mass flow : 32 t/h (1200 lb/min)<br>Maximum mass flow: 50 t/h (1800 lb/min) | - | | Material wetted | d par | ts | | S | | | | | | | | | | | Stainless steel 1.4404/316L | - | | Process conne | Process connection size 50 | | | | | | | | | | | | | | 2" | - | | Process conne | Process connection type | | | | | | | | | | | | | | ASME flange class 900, suitable for ASME B16.5, raised face (RF) | see tables on page [> 41] | | Frocess conne | CA5 | | | | | | | | | | | | | | ASME flange class 900, suitable for ASME B16.5, ring joint (RJ) | see tables on page [# 41] | | Process fluid to | empe | eratur | e ran | ige | | | | 0 | | | | | | | Standard, integral type: -50 $-$ 150 °C (-58 $-$ 302 °F), remote type: -70 $-$ 150 °C (-94 $-$ 302 °F) | _ | | | | | | | | | 0 | | | | | | | | Stainless steel 1.4301/304, 1.4404/316L | _ | | Sensor housing | ensor housing material 1 | | | | | | | | | | | | | | Stainless steel 1.4404/316L | not with Ex Approval JF53, JF54 | | | | | | | | | | | E7 | | | | | | Liquid: 0.2 % maximum mass flow deviation $D_{\text{flat}},4$ g/l density deviation | not with transmitter N | | | | | | | | | | | D7 | | | | | | Liquid: 0.15 % maximum mass flow deviation $D_{\text{flat}},4$ g/l density deviation | not with transmitter U | | Mass flow and | dens | sitv ar | cura | icv | | | | | С3 | | | | | | Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},1$ g/l density deviation | only with transmitter U | | Wass now and | ucii | only at | Joura | Ю | | | | | C2 | | | | | | Liquid: 0.1 % maximum mass flow deviation $D_{\text{flat}},0.5\text{ g/I}$ density deviation | not with transmitter E | | | | | | | | | | | 70 | 70 | | | | | Gas: 0.75 % maximum mass flow deviation D <sub>flat</sub> | only with transmitter E | | | | | | | | | | | | | | | | | O 0.5 %i | not with transmitter E | | | | | | | | | | | 50 | | | | | | Gas: 0.5 % maximum mass flow deviation D <sub>flat</sub> | not with option C52, VM | | | | | | | | | | | | 0 | | | | | Integral type with "urethane-cured polyester powder coating" coated aluminum transmitter housing | not with communication type and I/O NN | | | | | | | | | | | | 2 | | | | | Integral type with "corrosion protection coating" coated aluminum transmitter housing | not with option L, MC_, | | | | | | | | | | | | А | | | | | Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and standard neck sensor | not with option RB | | | | | | | | | | | | В | | | | | Remote type with "urethane-cured polyester powder coating" coated aluminum transmitter housing and long neck sensor | not with option RB | | Design and ho | Design and housing | | | | | | | | E | | | | | Remote type with "corrosion protection coating" coated aluminum transmitter housing and standard neck sensor | not with communication type and I/O NN not with option RB | | | | | | | | | | | | F | | | | | Remote type with "corrosion protection coating" coated aluminum transmitter housing and long neck sensor | not with option RB | | | | | | | | | | | | J | | | | | Remote type stainless steel transmitter and standard neck sensor | not with Ex approval KF21,<br>SF21, GF21, UF21, NF21,<br>PF21, JF5_ | | | | | | | | | | | | | | | | | not with option RB | | | | | | | | | | | | к | | | | | | | Remote type stainless steel transmitter and long neck sensor | not with Ex approval KF21,<br>SF21, GF21, UF21, NF21,<br>PF21,JF5_ | | | | | | | | | | | | | | | | | | not with option RB | | Model code | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | Description | Restrictions | |---------------|------------|----|----|-----|-----|----|-----|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|-------------------------------|--------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------| | position | | | | | | | | | | | NNO | 00 | | | None | not with communication type and I/O JP, JQ, JR, JS | | | | | | | | | | | | | KF2 | 1 | | | ATEX, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | KF2 | 2 | | | ATEX, explosion group IIB and IIIC | - | | | | | | | | | | | | | SF2 | 1 | | | IECEx, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | SF2 | 2 | | | IECEx, explosion group IIB and IIIC | | | | | | | | GF2 | 21 | | | EAC Ex, explosion group IIC and IIIC | not with design and housing J, K only with option VB, VE or VR | | | | | | | | | | | | | | | GF2 | GF22 | | | EAC Ex, explosion group IIB and IIIC | only with option VB, VE or VR | | | | | | | | | | | FF1 | 1 | | | FM, groups A, B, C, D, E, F, G | not with transmitter N, cable entries 4, communication type and I/O G_ | | | | | | | | Ex approval | x approval | | | | | | | | FF1 | 2 | | | FM, groups C, D, E, F, G | not with option KC, VB, VE, VR, Y not with process connection type TG9, TT9 | | | | | | | | | | | | | | | UF2 | :1 | | | INMETRO, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | UF2 | UF22 | | | INMETRO, explosion group IIB and IIIC | | | | | | | | | | | | | | NF2 | :1 | | | NEPSI, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | NF2 | 2 | | | NEPSI, explosion group IIB and IIIC | only with option CN only with option CN | | | | | | | | | | | | | | PF21 | | | Korea Ex, explosion group IIC and IIIC | not with design and housing J, K | | | | | | | | | | | | | | | | | | only with option KC | | | | | | | | | | | | | PF2 | 2 | | | Korea Ex, explosion group IIB and for integral type also IIIC | only with option KC | | | | | | JF5 | 3 | | | Japan Ex, Temperature class T3, explosion group IIC | not with transmitter N, design<br>and housing J, K, cable en-<br>tries 2, communication type<br>and I/O JP, JQ, JR, JS, G1,<br>display 0 | | | | | | | | | | | | | | JF5 | 4 | | | Japan Ex, Temperature class T4, explosion group IIC | only with option PJ and V52 or V53 not with option Y | | | | | | | | | | | | | | | | | | | - | 2 | | | ANSI ½" NPT | not with Ex approval JF5_ | | Cable entries | | | | | | 4 | | | ISO M20x1.5 | not with Ex approval FF11,<br>FF12 | | | | | | | | Model code position | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | Description | Restrictions | |----------------------------|----|----|----|----|----|----|----|----|----|-----|-----|-----|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------| | position | | | | | | | | | | | | | JA | | 1 active current output HART,<br>1 passive pulse or status output | | | | | | | | | | | | | | | | JB | | 2 active current outputs one with HART,<br>2 passive pulse or status outputs | | | | | | | | | | | | | | | | JC | | 2 active current outputs one with HART,<br>1 passive pulse or status output,<br>1 voltage-free status input | | | | | | | | | | | | | | | | JD | | 1 active current output HART,<br>2 passive pulse or status outputs,<br>1 passive status output | | | | | | | | | | | | | | | | JE | | 1 active current output HART,<br>2 passive pulse or status outputs,<br>1 voltage-free status input | not with option CGC, VM | | | | | | | | | | | | | | | JF | | 1 active current output HART, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor, 1 voltage-free status input | | | Communication type and I/O | | | | | | | | | | | | JG | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 active pulse or status output,<br>1 voltage-free status input | | | | | | | | | | | | | | | | | JH | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 passive current output,<br>1 active current input | | | | | | | | | | | | | | | | JJ | | 1 active current output HART,<br>2 passive pulse or status outputs,<br>1 active current input | | | | | | | | | | | | | | JK | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 voltage-free status input,<br>1 active current input | not with transmitter E | | | | | | | | | | | | | | | JL | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 passive current output,<br>1 passive current input | not with transmitter E | | | | | | | | | | | | | | | | | JM | | 1 active current output HART,<br>2 passive pulse or status outputs,<br>1 passive current input | | | | | | | | | | | | | | | | JN | | 1 active current output HART,<br>1 passive pulse or status output,<br>1 voltage-free status input,<br>1 passive current input | | | Model code | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | Description | Restrictions | |---------------|----------------------------|----|----|----|----|----|----|----|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------| | position | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | JP | | 2 passive current outputs one with HART,<br>1 passive pulse or status output | | | | | | | | | | | | | | | | JQ | | 2 passive current outputs one with HART,<br>2 passive pulse or status outputs | not with Ex approval NN00, JF5_ | | | | | | | | | | | | | | | JR | | 2 passive current outputs one with HART,<br>1 passive NAMUR pulse or status output | not with option CGC, MC_,<br>VM | | | | | | | | | | | | | | | JS | | 2 passive current outputs one with HART,<br>2 passive NAMUR pulse or status outputs | | | | | | | | | | | | | | | | МО | | Modbus output,<br>1 passive pulse or status output | not with option CGC, PS, BT<br>VM | | | | | | | | | | | | | | | M2 | | Modbus output, 1 passive pulse or status output, 1 active current input | not with transmitter E<br>not with option PS, BT, VM | | | | | | | | | | | | | | | МЗ | | Modbus output,<br>2 passive pulse or status outputs | | | | | | | | | | | | | | | | M4 | | Modbus output, 1 passive pulse or status output, 1 active pulse or status output | | | | ı | | | | | | M5 | | Modbus output, 1 passive pulse or status output, 1 active pulse or status output with pull-up resistor | not with option CGC , PS, BT, VM | | | | | | | | Communication | communication type and I/O | | | | | | | | | M6 | | Modbus output, 1 passive pulse or status output, 1 active current output | | | | | | | | | | | | | | | | | | | M7 | | Modbus output, 1 passive pulse or status output, 1 passive current input | not with transmitter E not with option PS, BT, VM | | | | | | | | | | | | | | | | | | not with transmitter E | | | | | | | | | | | | | G0 | | PROFIBUS PA,<br>1 passive pulse output | not with Ex Approval FF11, FF12 | | | | | | | | | | | | | | | | | | | | not with option PS, BT, MC_ | | | | | | | | | | | | | | | | | | not with transmitter E | | | | | | | | | | | | | | | G1 | | PROFIBUS PA, intrinsically safe, | not with Ex Approval NN00, FF11, FF12, JF5_ | | | | | | | | | | | | | | | | | 1 passive pulse output | not with option PS, Q11, BT, MC_ | | | | | | | | | | | | | | | | | | only with transmitter N | | | | | | | | | | NN | | Spare sensor without transmitter, all communication types and I/Os apply | not with design and housing<br>0, 2, Ex Approval FF11,<br>FF12, JF5_ | | | | | | | | | | | | | | | | | | | | | | | not with option VB, VR | | | | | | | | | | | | | | | | | No display | only with transmitter E | | | | | | | | | | | | | | | | 0 | No display | not with option JF5_ | | | | | | | | | | | | | | | | 1 | With display | not with transmitter N | | Display | | | | | | | | | | | | | | | | only with transmitter N | | | | | | | | | | | | | N | Spare sensor without transmitter, no display applied | not with Ex Approval FF11, FF12, JF5_ | | | | | | | | | | | | | | | not with option VB, VR | | | | | | | # 10.4 Overview options | Option category | Options | Description | Restriction | | | |-----------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--| | Additional nameplate information | BG | Nameplate with customer device location identification | _ | | | | Presetting of customer parameters | PS | Presetting according to customer parameters | not with transmitter N, communication type and I/O G_, M_ | | | | | PJ | Delivery to Japan incl. SI units pre-setting and Quality Inspection Certificate (EN/JP) | _ | | | | | CN | Delivery to China including China RoHS mark | | | | | | KC | Delivery to Korea including KC mark | not with Ex Approval | | | | Country-specific<br>delivery | VE | Delivery to EAEU area including EAC mark | FF1_ | | | | | VB | Delivery to EAEU area including EAC mark and Belarus Pattern Approval mark | not with transmitter N,<br>Ex Approval FF1_,<br>communication type<br>and I/O G_ | | | | | VR | Delivery to EAEU area including EAC mark and Russia Pattern Approval mark | not with Ex Approval FF1_ | | | | Country-specific | Q11 | PESO approval delivery | only with Ex Approval KF2_ not with communica- | | | | Sountry-specific application | | | tion type and I/O G1 | | | | | QR | Primary calibration valid in Russia, including certifi- | only with option VR | | | | | GIV | cate | not with transmitter N | | | | | | | only with transmitter U | | | | Concentration and petroleum measurement | C52 | Net Oil Computing (NOC) following API standard | not with mass flow and<br>density accuracy 70,<br>50 | | | | Rupture disc | RD | Rupture disc | _ | | | | Mass flow calibration | K2 | Customer-specific 5-point mass flow calibration with measuring range on factory calibration certificate (mass flow or volume flow of water). A table listing the desired calibration points must be supplied with the order. | | | | | Mass now campianon | K5 | Customer-specific 10-point mass flow calibration with measuring range on DAkkS calibration certificate (mass flow or volume flow of water). A table listing the desired calibration points must be supplied with the order. | _ | | | | Accordance with terms | P2 | Declaration of compliance with the order 2.1 according to EN 10204 | | | | | of order | P3 | Quality Inspection Certificate<br>(Inspection Certificate 3.1 according to EN 10204) | not with option P10,<br>P11, P12, P13, P21,<br>P22 | | | | Material certificates | P6 | Certificate of Marking Transfer and Raw Material<br>Certificates (Inspection Certificate 3.1 according to<br>EN 10204), including IGC and conform to NACE<br>MR0175 and MR0103 | not with option P10,<br>P11, P12, P13, P21,<br>P22 | | | | Option category | Options | Description | Restriction | |--------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Pressure testing | P8 | Hydrostatic Pressure Test Certificate (Inspection Certificate 3.1 according to EN 10204) | not with option P10,<br>P12, P13, P14, P21 | | Surfaces free of oil and grease | H1 | Degreasing of wetted surfaces according to ASTM G93-03 (Level C), including test report | _ | | | | WPS according to DIN EN ISO 15609-1 | | | | WP | WPQR according to DIN EN ISO 15614-1 | not with option P13, | | | | WQC according to DIN EN 287-1 or DIN EN ISO 6906-4 | P14, P15, P2_ | | Welding certificates | WPA | Welding procedures and Certificate according to ASME IX | only with process<br>connection type BA_ or<br>CA_<br>not with option P12,<br>P13, P14, P2_ | | | RT | X-ray inspection of flange weld seam according to DIN EN ISO 17636-1/B Evaluation according to AD 2000 HP 5/3 and DIN EN ISO 5817/C, including certificate | not with material wet-<br>ted parts H<br>not with meter size 34<br>for mass flow and den-<br>sity accuracy C2, C3<br>not with option P15,<br>P2_ | | X-ray inspection of flange weld seam | RTA | X-ray test according to ASME V | not with material wet-<br>ted parts H<br>not with meter size 34<br>for mass flow and den-<br>sity accuracy C2, C3<br>only with process<br>connection type BA_ or<br>CA_<br>not with option P12,<br>P13, P14, P2_ | | | PT | Dye penetrant test of process connection weld seams according to DIN EN ISO 3452-1, including certificate | | | Dye penetrant test of weld seams | PTA | Dye penetrant test of flange welding according to ASME V, including certificate | only with process<br>connection type BA_ or<br>CA_<br>not with option P12,<br>P13, P14, P2_ | | Ferrite testing | FE | Ferrite test for flange welding acc. DIN EN ISO 8249 | not with meter size 34<br>not with material wet-<br>ted parts H | | Transmitter housing rotated 180° | RB | Alignment of transmitter housing rotated 180° | not with transmitter N not with design and housing A, B, E, F, J, K | | Measurement of heat quantity | CGC | Measurement of the total transported energy content of a fuel in connection with a sensor for determining the fuel's calorific value (e.g. a gas chromatograph, not included in scope of delivery) | only with transmitter U only with communication type and I/O JH, JJ, JK, JL, JM, JN, M2, M7, G_ | | Option category | Options | Description | Restriction | | |-----------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--| | | L000 | without standard connecting cable | | | | | L005 | 5 meter (16.4 ft) remote connecting cable terminated std. gray / Ex blue | | | | Connecting cable type | L010 | 10 meter (32.8 ft) remote connecting cable terminated std. gray / Ex blue | not with transmitter N<br>not with design and | | | and length | L015 | 15 meter (49.2 ft) remote connecting cable terminated std. gray / Ex blue | housing 0, 2 not with option MC_ | | | | L020 | 20 meter (65.6 ft) remote connecting cable terminated std. gray / Ex blue | | | | | L030 | 30 meter (98.4 ft) remote connecting cable terminated std. gray / Ex blue | | | | | Y000 | without fire retardant connecting cable | not with design and housing 0, 2 not with Ex approval FF, JF5_ | | | | Y005 | 5 meter (16.4 ft) remote fire retardant connecting cable not terminated | | | | Connecting cable type | Y010 | 10 meter (32.8 ft) remote fire retardant connecting cable not terminated | | | | and length | Y015 | 15 meter (49.2 ft) remote fire retardant connecting cable not terminated | not with transmitter N not with design and | | | | Y020 | 20 meter (65.6 ft) remote fire retardant connecting cable not terminated | housing 0, 2<br>not with Ex approval | | | | Y030 | 30 meter (98.4 ft) remote fire retardant connecting cable not terminated | FF, JF5_ | | | Marino Approval | MC2 | Marine approval according to DNV GL piping class 2 | not with transmitter N, material wetted parts H, design and housing 0, 2, communication type and I/O JP, JQ, JR, JS, G_ | | | Marine Approval | MC3 | Marine approval according to DNV GL piping class 3 | not with option V5_<br>only with option Y<br>in case of thermal oil<br>applications option RT<br>or RTA is mandatory | | | | P10 | <ul> <li>Combination of:</li> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> <li>P8: Hydrostatic Pressure Test Certificate</li> </ul> | not with option P3, P6,<br>P8 | | | Combined certificate | P11 | <ul> <li>Combination of:</li> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> <li>PM: Positive Material Identification of wetted parts</li> </ul> | not with option P3, P6, PM | | | Option category | Options | Description | Restriction | |----------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | P12 | <ul> <li>Combination of:</li> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> <li>PT: Dye penetrant test according to DIN EN ISO 3452-1</li> <li>P8: Hydrostatic Pressure Test Certificate</li> </ul> | not with option P3, P6,<br>P8, P15, PT, WPA,<br>RTA, PTA | | | P13 | <ul> <li>Combination of:</li> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> <li>PT: Dye penetrant test according to DIN EN ISO 3452-1</li> <li>PM: Positive Material Identification of wetted parts</li> <li>P8: Hydrostatic Pressure Test Certificate</li> <li>WP: Welding certificates</li> </ul> | not with option P3, P6,<br>P8, P15, WP, PM, PT,<br>WPA, RTA, PTA | | Combined certificate | P14 | <ul> <li>Combination of:</li> <li>PM: Positive Material Identification of wetted parts</li> <li>P8: Hydrostatic Pressure Test Certificate</li> <li>WP: Welding certificates</li> </ul> | not with option P8,<br>P15, WP, PM, WPA,<br>RTA, PTA | | | P20 | Combination of: PTA: Dye penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX RTA: X-ray test according to ASME V | not with material wet-<br>ted parts H<br>not with meter size 34<br>for mass flow and den-<br>sity accuracy C3, C2<br>only with process<br>connection type BA_ or<br>CA_<br>not with option WP,<br>WPA, RT, RTA, PT,<br>PTA | | | P21 | <ul> <li>Combination of:</li> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> <li>P8: Hydrostatic Pressure Test Certificate</li> <li>PTA: Dye penetrant test of flange welding according ASME V</li> <li>WPA: Welding procedures and Certificates according to ASME IX</li> <li>RTA: X-ray test according to ASME V</li> </ul> | not with material wetted parts H not with meter size 34 for mass flow and density accuracy C3, C2 only with process connection type BA_ or CA_ not with option P3, P6, P8, WP, WPA, RT, RTA, PT, PTA | | Option category | Options | Description | Restriction | |--------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------| | | | Combination of: P3: Quality Inspection Certificate | not with material wet-<br>ted parts H | | Combined certificate | | <ul> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> <li>PM: Positive Material Identification of wetted</li> </ul> | not with meter size 34 for mass flow and density accuracy C3, C2 | | | P22 | <ul><li>parts</li><li>PTA: Dye penetrant test of flange welding according ASME V</li></ul> | only with process connection type BA_ or CA_ | | | | <ul> <li>WPA: Welding procedures and Certificates according to ASME IX</li> <li>RTA: X-ray test according to ASME V</li> </ul> | not with option P3, P6,<br>WP, WPA, RT, RTA,<br>PM, PT, PTA | | Positive Material | | , , | , , , . | | Identification of wetted parts | PM | Positive Material Identification of wetted parts, including certificate (Inspection Certificate 3.1 according to EN 10204) | not with option P11,<br>P13, P14, P22 | | Tube Health Check | TC | Tube Health Check | not with transmitter N | | ASME B31.3 compliance | P15 | ASME B31.3 compliance NORMAL FLUID SERVICE | only with process<br>connection type BA_ or<br>CA_<br>not with option WP,<br>RT, PT, P12, P13, | | Batching function | ВТ | Batching and filling function | P14, T<br>only with transmitter U<br>and communication<br>type and I/O J_ | | | | | only with transmitter U | | Viscosity function | VM | Viscosity computing function for liquids | not with mass flow and<br>density accuracy 70,<br>50 | | | | | only with communication type and I/O JH, JJ, JK, JL, JM, JN, G_ | | | V52 | 2 cable glands, 1 blind plug for power, communica- | not with transmitter N | | Cable glands and blind | V 32 | tion and I/O | only with Ex approval | | plug | V53 3 | 3 cable glands for power, communication and I/O | JF5_<br>not with MC_ | ### 10.5 Model code The model code of the Rotamass Total Insight is explained below. Items 1 through 14 are mandatory entries and must be specified at the time of ordering. Device options (item 15) can be selected and specified individually by separating them with slashes. - 2 Sensor - 3 Meter size - 4 Material wetted parts - 5 Process connection size - 6 Process connection type - 7 Sensor housing material - 8 Process fluid temperature range - 9 Mass flow and density accuracy - 10 Design and housing - 11 Ex approval - 12 Cable entries - 13 Communication type and I/O - 14 Display - 15 Options ### 10.5.1 Transmitter | Model code | Transmitter | |------------|--------------------------------------------------------------------------------------| | position 1 | | | E | Essential (base function) | | U | Ultimate (high function) | | N | Spare sensor without transmitter, combinable with Rotamass Total Insight transmitter | #### 10.5.2 Sensor | Model code position 2 | Sensor | | |-----------------------|---------|--| | Т | Intense | | #### 10.5.3 Meter size | Model code position 3 | Meter size | Nominal mass flow in t/h (lb/min) | Maximum mass flow in t/h (lb/min) | |-----------------------|------------|-----------------------------------|-----------------------------------| | 34 | 34 | 3 (110) | 5 (180) | | 36 | 36 | 10 (370) | 17 (620) | | 38 | 38 | 32 (1200) | 50 (1800) | # 10.5.4 Material wetted parts | Model code position 4 | Material wetted parts | |-----------------------|---------------------------------------------------------| | S | Stainless steel 1.4404/316L | | Н | Ni alloy C-22/2.4602 (only available for meter size 34) | Non-wetted parts of the process connection are generally made of stainless steel 1.4404/316L. #### 10.5.5 Process connection size | Model code position 5 | Process connection size | |-----------------------|-------------------------| | 08 | 3/" /8 | | 15 | 1/2" | | 20 | 3/4 | | 25 | 1" | | 50 | 2" | **(i)** Available sizes depend on the actual process connection, see also chapter *Process connections, dimensions and weights of sensor* [> 40]. ## 10.5.6 Process connection type | Model code position 6 | Туре | Process connections | | | |-----------------------|------------------------------------------|---------------------------------------------|--|--| | BA5 | Flanges suitable for | ASME flange class 900, raised face (RF) | | | | CA5 | | ASME flange class 900, ring joint (RJ) | | | | BA6 | | ASME flange class 1500, raised face (RF) | | | | CA6 | | ASME flange class 1500, ring joint (RJ) | | | | TG9 | Process connections with internal thread | Process connection with internal thread G | | | | TT9 | | Process connection with internal thread NPT | | | ## 10.5.7 Sensor housing material | Model code position 7 | Housing material | |-----------------------|-----------------------------------------| | 0 | Stainless steel 1.4301/304, 1.4404/316L | | 1 | Stainless steel 1.4404/316L | ## 10.5.8 Process fluid temperature range | Model code position 8 | Temperature range | Process fluid temperature range | |-----------------------|-------------------|----------------------------------------------------------------------------------------| | 0 | Standard | Integral type: -50 – 150 °C (-58 – 302 °F)<br>Remote type: -70 – 150 °C (-94 – 302 °F) | For temperature range limits, see chapter Process fluid temperature range [ 29]. ## 10.5.9 Mass flow and density accuracy | Model code | Fluid | Maximum deviation | | | | |------------|--------|------------------------|--------------|--|--| | position 9 | | Mass flow | Density | | | | | | D <sub>flat</sub> in % | in g/l | | | | E7 | Liquid | 0.2 | 4 | | | | D7 | | 0.15 | 4 | | | | C3 | | 0.1 | 1 | | | | C2 | | | 0.5 | | | | 70 | 0 | 0.75 | <del>-</del> | | | | 50 | Gas | 0.5 | _ | | | Devices with value $\_2$ in model code position 9 receive an additional density calibration with a corresponding certificate. # 10.5.10 Design and housing | Model code position 10 | Design type | Transmitter housing material | Transmitter housing coating | Sensor<br>terminal box<br>material | Long neck | |------------------------|---------------|------------------------------|------------------------------|------------------------------------|-----------| | 0 | | Aluminum | Standard coating | _ | | | 2 | Integral type | | Corrosion protection coating | | _ | | Α | | | Standard coating | Stainless | No | | В | | | | | Yes | | E | | Aluminum | Corrosion | | No | | F | Remote type | mote type | protection coating | steel | Yes | | J | | Stainless | _ | | No | | K | | Steel | Steel | _ | 1 | The remote type requires a connecting cable to connect sensor and transmitter. It can be selected in various lengths as a device option, see *Connecting cable type and length* [> 104]. # 10.5.11 Ex approval | Model code position 11 | Ex approval | |------------------------|-----------------------------------------------------| | NN00 | None | | KF21 | ATEX, explosion group IIC and IIIC | | KF22 | ATEX, explosion group IIB and IIIC | | SF21 | IECEx, explosion group IIC and IIIC | | SF22 | IECEx, explosion group IIB and IIIC | | FF11 | FM, group A, B, C, D, E, F, G | | FF12 | FM, group C, D, E, F, G | | GF21 | EAC Ex, explosion group IIC and IIIC | | GF22 | EAC Ex, explosion group IIB and IIIC | | UF21 | INMETRO, explosion group IIC and IIIC | | UF22 | INMETRO, explosion group IIB and IIIC | | NF21 | NEPSI, explosion group IIC and IIIC | | NF22 | NEPSI, explosion group IIB and IIIC | | PF21 | Korea Ex, explosion group IIC and IIIC | | PF22 | Korea Ex, explosion group IIB and IIIC | | JF53 | Japan Ex, Temperature class T3, explosion group IIC | | JF54 | Japan Ex, Temperature class T4, explosion group IIC | # 10.5.12 Cable entries | | Cable entries | |-------------|---------------| | position 12 | | | 2 | ANSI ½" NPT | | 4 | ISO M20x1.5 | Ordering information Model code ## 10.5.13 Communication type and I/O HART I/O | Model code | Connection terminal assignment | | | | | |-------------|--------------------------------|----------|-------------|----------------|----------------| | position 13 | I/O1 +/- | I/O2 +/- | I/O3 +/- | I/O4 +/- | WP | | JA | lout1 | P/Sout1 | | | Write-protect | | JA | Active | Passive | _ | _ | write-protect | | JB | lout1 | P/Sout1 | P/Sout2 | lout2 | Write-protect | | JB | Active | Passive | Passive | Active | write-protect | | JC | lout1 | P/Sout1 | Sin | lout2 | Write-protect | | 30 | Active | Passive | Sili | Active | write-protect | | JD | lout1 | P/Sout1 | Sout | P/Sout2 | Write-protect | | 3D | Active | Passive | Passive | Passive | write-protect | | JE | lout1 | P/Sout1 | Sin | P/Sout2 | Write-protect | | JE | Active | Passive | SIII | Passive | write-protect | | | | | | P/Sout2 | | | JF | lout1 | P/Sout1 | Sin | Active | Write-protect | | 01 | Active | Passive | | Internal pull- | | | | | | | up resistor | | | JG | lout1 | P/Sout1 | Sin P/Sout2 | Write-protect | | | | Active | Passive | <b>5</b> | Active | Title protect | | JH | lout1 | P/Sout1 | lout2 | lin | Write-protect | | | Active | Passive | Passive | Active | Willo protoct | | JJ | lout1 | P/Sout1 | P/Sout2 | lin | Write-protect | | | Active | Passive | Passive | Active | Wille-protect | | JK | lout1 | P/Sout1 | Sin | lin | Write-protect | | OTC . | Active | Passive | Oiii | Active | Wille-protect | | JL | lout1 | P/Sout1 | lout2 | lin | Write-protect | | JL | Active | Passive | Passive | Passive | vviite-protect | | JM | lout1 | P/Sout1 | P/Sout2 | lin | Write-protect | | JIVI | Active | Passive | Passive | Passive | vviite-protect | | JN | lout1 | P/Sout1 | Sin | lin | Write protect | | JIN | Active | Passive | GIII | Passive | Write-protect | lout1 Analog current output with HART communication lout2Analog current outputlinAnalog current inputP/Sout1Pulse or status outputP/Sout2Pulse or status output Sin Status input Sout Status output # HART I/O, intrinsically safe | Model code position 13 | Connection terminal assignment | | | | | |------------------------|--------------------------------|-----------------------------|------------------|-----------------------------|---------------| | | I/O1 +/- | I/O2 +/- | I/O3 +/- | I/O4 +/- | WP | | JP | lout1<br>Passive | P/Sout1<br>Passive | lout2<br>Passive | _ | Write-protect | | JQ | lout1<br>Passive | P/Sout1<br>Passive | lout2<br>Passive | P/Sout2<br>Passive | Write-protect | | JR | lout1<br>Passive | P/Sout1<br>Passive<br>NAMUR | lout2<br>Passive | _ | Write-protect | | JS | lout1<br>Passive | P/Sout1<br>Passive<br>NAMUR | lout2<br>Passive | P/Sout2<br>Passive<br>NAMUR | Write-protect | Iout1 Analog current output with HART communication Iout2 Analog current outputP/Sout1 Pulse or status outputPulse or status output Intrinsically safe outputs are only available in combination with selecting Ex approval of the device, see chapter Ex approval. #### Modbus I/O | Model code | Connection terminal assignment | | | | | | | |-------------|--------------------------------|----------|--------|-------------|-------------|-------------|----------------------------------------| | position 13 | I/O1 +/- | I/O2 +/- | I/O3 + | I/O3 - | I/O4 + | I/O4 - | WP | | MO | | P/Sout1 | | Modbus | Modbus | Modbus | Write- | | IVIO | _ | Passive | _ | С | В | Α | protect | | M2 | lin | P/Sout1 | | Modbus | Modbus | Modbus | Write- | | IVIZ | Active | Passive | _ | С | В | Α | protect | | M3 | P/Sout2 | P/Sout1 | _ | Modbus | Modbus<br>B | Modbus | Write-<br>protect | | IVIS | Passive | Passive | _ | С | | Α | | | M4 | P/Sout2 | P/Sout1 | | Modbus<br>C | Modbus<br>B | Modbus<br>A | Write-<br>protect | | 1014 | Active | Passive | _ | | | | | | | P/Sout2 | | | Modbus<br>C | Modbus<br>B | Modbus<br>A | Write-<br>protect | | | Active | P/Sout1 | | | | | | | M5 | Internal | Passive | _ | | | | | | | pull-up | | | | | | | | | resistor<br>lout1 | P/Sout1 | | Madhus | Modbus<br>B | Modbus<br>A | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | M6 | Active | Passive | _ | Modbus<br>C | | | Write-<br>protect | | | | | | 0 | | , , | protoot | | M7 | lin | P/Sout1 | _ | Modbus<br>C | Modbus<br>B | Modbus<br>A | Write-<br>protect | | | Passive | Passive | | | | | | lout Analog current output, no HART Iin Analog current inputP/Sout1 Pulse or status outputP/Sout2 Pulse or status output Ordering information Model code #### **PROFIBUS PA** | Model code position 13 | Connection terminal assignment | | | | | |------------------------|--------------------------------|-----------------------|----------|----------|---------------| | | I/O1 +/- | I/O2 +/- | I/O3 +/- | I/O4 +/- | WP | | G0 | PROFIBUS<br>PA | Pulse<br>Passive | _ | _ | Write-protect | | G1 | PROFIBUS<br>PA (IS) | Pulse<br>Passive (IS) | _ | _ | Write-protect | PROFIBUS PA PA communication Pulse Passive Pulse / Frequency output Intrinsically safe (IS) outputs are only available in combination with selecting Ex approval of the device, see chapter Ex approval. #### Spare sensor I/O | Model code | Specification | |-------------|--------------------------------------------------------------------------| | position 13 | | | NN | Spare sensor without transmitter, all communication types and I/Os apply | ## 10.5.14 Display **(i)** The display unit includes a slot for the microSD card. | Model code position 14 | Display | |------------------------|------------------------------------------------------| | 0 | Without display | | 1 | With display | | N | Spare sensor without transmitter, no display applied | Devices without a display are available for Essential transmitters only (value E in model code position 1). ### 10.6 Options Additional device options that can be combined may be selected; they are listed sequentially in model code position 15. In this case, each device option is preceded by a slash. The following device options are possible: - Connecting cable length, see chapter Connecting cable type and length [▶ 104]. - Customer-specific adaptation of the nameplate, see chapter Additional nameplate information [> 104]. - Flow meter presetting with customer parameters, see chapter Presetting of customer parameters [> 104]. - Concentration and petroleum measurement, see chapter Concentration and petroleum measurement [▶ 105]. - Batching function, see chapter Batching function [ 105]. - Viscosity function, see chapter Viscosity function [▶ 105]. - Certificates to be supplied, see chapter Certificates [▶ 105]. - Country-specific delivery Country-specific delivery [ 108]. - Country-specific application Country-specific application [▶ 108]. - Rupture disc, see chapter Rupture disc [ 108]. - Tube Health Check, see chapter Tube Health Check [▶ 108]. - Transmitter housing rotated 180°, see chapter Transmitter housing rotated 180° [▶ 109]. - Measurement of heat quantity, see chapter Measurement of heat quantity [ 109]. - Marine type approval, see chapter Marine approval [▶ 110]. - Cable glands and blind plug, see chapter Cable glands and blind plug [ 110] Ordering information Options ### 10.6.1 Connecting cable type and length When ordering the remote type it is mandatory to select one of the below shown connecting cable lengths. It is possible to order cables with higher length than the maximum cable length and termination kits separately . For this purpose please check the "Customers Maintenance Parts List" (Ref.: CMPL 01U10B00-00EN-R) or consult our Yokogawa Service team. | Options | Specification | |---------|---------------------------------------------------------------------------| | L000 | without standard connecting cable 1) | | L005 | 5 meter (16.4 ft) remote connecting cable terminated std. gray / Ex blue | | L010 | 10 meter (32.8 ft) remote connecting cable terminated std. gray / Ex blue | | L015 | 15 meter (49.2 ft) remote connecting cable terminated std. gray / Ex blue | | L020 | 20 meter (65.6 ft) remote connecting cable terminated std. gray / Ex blue | | L030 | 30 meter (98.4 ft) remote connecting cable terminated std. gray / Ex blue | | Y000 | without fire retardant connecting cable <sup>1)</sup> | | Y005 | 5 meter (16.4 ft) remote fire retardant connecting cable, not terminated | | Y010 | 10 meter (32.8 ft) remote fire retardant connecting cable, not terminated | | Y015 | 15 meter (49.2 ft) remote fire retardant connecting cable, not terminated | | Y020 | 20 meter (65.6 ft) remote fire retardant connecting cable, not terminated | | Y030 | 30 meter (98.4 ft) remote fire retardant connecting cable, not terminated | <sup>&</sup>lt;sup>1)</sup> Even without cables, it is necessary to select this option, because the device name plate shows the allowed ambient temperature depending on the selected cable type (see chapter / 337). Fire retardant cable is mandatory for DNV GL type approval (options MC2 and MC3). The minimum permissible ambient temperature for the two cable types differs (see chapter *Allowed ambient temperature for sensor* [> 33]). The cable type intended to be used needs to be indicated (with option L000 or Y000) even if connecting cable is ordered separately. #### 10.6.2 Additional nameplate information | Options | Specification | |---------|--------------------------------------------------------| | BG | Nameplate with customer device location identification | This marking (Tag No.) must be provided by the customer at the time the order is placed. #### 10.6.3 Presetting of customer parameters Rotamass flow meters can be preconfigured with customer-specific data. | Options | Specification | |---------|----------------------------------------------| | PS | Presetting according to customer parameters. | ### 10.6.4 Concentration and petroleum measurement | Options | Specification | |---------|------------------------------------------------| | C52 | Net Oil Computing (NOC) following API standard | Device option C52 is not available in combination with gas measurement devices (model code position 9 with the values: 70 or 50). Options with C52 are available only for Ultimate transmitters (value U in model code position 1). For details about the device function refer to *Concentration and petroleum measurement* [> 63]. #### 10.6.5 Batching function | Options | Specification | |---------|-------------------------------| | BT | Batching and filling function | For details about the device function refer to Batching function [ 64]. #### 10.6.6 Viscosity function | Options | Specification | |---------|------------------------------------------| | VM | Viscosity computing function for liquids | For details about the device function refer to Viscosity function [ 65]. #### 10.6.7 Certificates # Accordance with terms of order | Options | Specification | |---------|-----------------------------------------------------------------------------------| | P2 | Declaration of compliance with the order 2.1 according to EN 10204 | | | Quality Inspection Certificate (Inspection Certificate 3.1 according to EN 10204) | # Material certificates | Options | Specification | | |---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | P6 | Certificate of Marking Transfer and Raw Material Certificates (Inspection Certificate 3.1 according to EN 10204), including IGC and conform to NACE MR0175 and MR0103 | | For details and exceptions please refer to Rota Yokogawa declaration about NACE conformity, document no. 8660001. # Dye penetrant test of weld seams | Options | Specification | |---------|-----------------------------------------------------------------------------------------------------------| | PT | Dye penetrant test of process connection weld seams according to DIN EN ISO 3452-1, including certificate | | РТА | Dye penetrant test of flange welding according to ASME V, including certificate | Ordering information Options | <b>Positive Material</b> | |--------------------------| | Identification of | | wetted parts | | Options | Specification | |---------|----------------------------------------------------------------------------------------------------------------------------| | PM | Positive Material Identification of wetted parts, including certificate (Inspection Certificate 3.1 according to EN 10204) | #### **Pressure testing** | Options | Specification | |---------|------------------------------------------------------------------------------------------| | P8 | Hydrostatic Pressure Test Certificate (Inspection Certificate 3.1 according to EN 10204) | # Welding certificates | | (inspection Certificate 3.1 according to EN 10204) | |---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Options | Specification | | WP | <ul> <li>Welding certificates:</li> <li>WPS according to DIN EN ISO 15609-1</li> <li>WPQR according to DIN EN ISO 15614-1</li> <li>WQC according to DIN EN 287-1 or DIN EN ISO 6906-4</li> </ul> | | WPA | Welding procedures and Certificate according to ASME IX | Only for the butt welding seam between the process connection and the flow divider. # Mass flow calibration | Options | Specification | |---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | K2 | Customer-specific 5-point mass flow calibration with measuring range on factory calibration certificate (mass flow or volume flow of water). A table listing the desired calibration points must be supplied with the order. | | K5 | Customer-specific 10-point mass flow calibration with measuring range on DAkkS calibration certificate (mass flow or volume flow of water). A table listing the desired calibration points must be supplied with the order. | Water is used as fluid for calibrating the Rotamass. # Surfaces free of oil and grease | Options | Specification | |---------|-----------------------------------------------------------------------------------------| | H1 | Degreasing of wetted surfaces according to ASTM G93-03 (Level C), including test report | # X-ray inspection of flange weld seam | Options | Specification | |---------|------------------------------------------------------------------------------------------------------------------------------------------------------------| | RT | X-ray inspection of flange weld seam according to DIN EN ISO 17636-1/B Evaluation according to AD 2000 HP 5/3 and DIN EN ISO 5817/C, including certificate | | RTA | X-ray test according to ASME V | This device option is not available for devices with wetted parts made of Ni alloy C-22/2.4602. #### Ferrite testing | Options | Specification | |---------|--------------------------------------------------------------| | FE | Ferrite test for flange welding according to DIN EN ISO 8249 | Determination of ferrite content is possible for flange weld seams according to DIN EN ISO 8249 and ANSI/AWS A4.2. The pass criterion is a ferrite number < 30. An inspection certificate is delivered with the device. | Combined | |--------------| | certificates | | Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P8: Hydrostatic Pressure Test Certificate Combination of: P6: Certificate of Marking Transfer and Raw Material Certificates P6: P6: Certificate of Marking Transfer and Raw Material Certificates P6: Certificate of Marking Transfer and Raw Material Certificates P7: P7: Dye penetrant ldentification of wetted parts Combination of: P6: Certificate of Marking Transfer and Raw Material Certificates P7: P8: Hydrostatic Pressure Test Certificate Combination of: P7: Dye penetrant test according to DIN EN ISO 3452-1 P7: Dye penetrant test according to DIN EN ISO 3452-1 P7: Dye penetrant test according to DIN EN ISO 3452-1 P7: Dye penetrant test according to DIN EN ISO 3452-1 P7: Dye penetrant test according to DIN EN ISO 3452-1 P7: Dye penetrant test according to DIN EN ISO 3452-1 P7: Dye penetrant test according to DIN EN ISO 3452-1 P7: Dye penetrant test according to Marking DIN EN ISO 3452-1 P7: Dye penetrant test according to Marking DIN EN ISO 3452-1 P8: Hydrostatic Pressure Test Certificate P8: Hydrostatic Pressure Test Certificate P7: P8: Hydrostatic Pressure Test Certificate P7: P8: Hydrostatic Pressure Test Certificate P7: P7: Dye penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX R7A: X-ray test according to ASME V P7: Dye penetrant test of flange welding according to ASME IX R7A: X-ray test according to ASME V Combination of: P7: Quality Inspection Certificate Cert | Options | Specification | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | P11 P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates PM: Positive Material Identification of wetted parts Combination of: P3: Quality Inspection Certificate P12 P6: Certificate of Marking Transfer and Raw Material Certificates P13: P8: Hydrostatic Pressure Test Certificate Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P6: Certificate of Marking Transfer and Raw Material Certificates P6: P6: Certificate of Marking Transfer and Raw Material Certificates P7: Dye penetrant test according to DIN EN ISO 3452-1 PM: Positive Material Identification of wetted parts P8: Hydrostatic Pressure Test Certificate WP: Welding certificates Combination of: PM: Positive Material Identification of wetted parts P8: Hydrostatic Pressure Test Certificate WP: Welding certificates Combination of: P14: P8: Hydrostatic Pressure Test Certificate WP: Welding certificates Combination of: P15: P76: Dye penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX P77: Name of Marking Transfer and Raw Material Certificates P8: Hydrostatic Pressure Test Certificate P8: Certificate of Marking Transfer and Raw Material Certificates P77: Dye penetrant test of flange welding according to ASME IX R77: X-ray test according to ASME V Combination of: P78: Quality Inspection Certificate P79: Quality Inspection Certificate P70: Certificate of Marking Transfer and Raw Material Certificates P71: P72: Dye penetrant test of flange welding according to ASME IX P73: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P74: Dye penetrant test of flange welding according to ASME IX P75: Dye penetrant test of flange welding according to ASME IX P76: Certificate of Marking Transfer and Raw Material Certificates P77: Dye penetrant test of flange welding according to ASME IX P77: Dye penetrant test of flange welding according to ASME IX P77: Dye pene | P10 | <ul> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> </ul> | | P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P7: Dye penetrant test according to DIN EN ISO 3452-1 P8: Hydrostatic Pressure Test Certificate Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P7: Dye penetrant test according to DIN EN ISO 3452-1 PM: Positive Material Identification of wetted parts P8: Hydrostatic Pressure Test Certificate WP: Welding certificates Combination of: PM: Positive Material Identification of wetted parts P8: Hydrostatic Pressure Test Certificate WP: Welding certificates Combination of: PM: Positive Material Identification of wetted parts P8: Hydrostatic Pressure Test Certificate WP: Welding certificates Combination of: P7A: Dye penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX RTA: X-ray test according to ASME V Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P8: Hydrostatic Pressure Test Certificate P7A: Dye penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX RTA: X-ray test according to ASME V Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P7: Quality Inspection Certificate P8: Certificates P9: Quality Inspection Certificates P9: Quality Inspection Certificates P7: Quality Inspection Certificates P7: Quality Inspection Certificates P7: Quality Inspection Certificates P7: Quality Inspection Certificates | P11 | <ul> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> </ul> | | P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P7: Dye penetrant test according to DIN EN ISO 3452-1 PM: Positive Material Identification of wetted parts P8: Hydrostatic Pressure Test Certificate WP: Welding certificates Combination of: PM: Positive Material Identification of wetted parts P8: Hydrostatic Pressure Test Certificate WP: Welding certificates Combination of: P74: Dye penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX RTA: X-ray test according to ASME V Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P74: Dye penetrant test of flange welding according to ASME IX RTA: X-ray test according to ASME V Combination of: P75: Quality Inspection Certificate P76: Certificate and Certificates according to ASME IX RTA: X-ray test according to ASME V Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P77: Dye penetrant test of flange welding according to ASME IX P76: Certificate of Marking Transfer and Raw Material Certificates P6: Certificate of Marking Transfer and Raw Material Certificates P77: Dye penetrant test of flange welding according to ASME IX P77: Dye penetrant test of flange welding according to ASME IX WPA: Welding procedures and Certificates according to ASME IX | P12 | <ul> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> <li>PT: Dye penetrant test according to DIN EN ISO 3452-1</li> </ul> | | P14 PM: Positive Material Identification of wetted parts P8: Hydrostatic Pressure Test Certificate WP: Welding certificates Combination of: PTA: Dye penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX RTA: X-ray test according to ASME V Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P8: Hydrostatic Pressure Test Certificate PTA: Dye penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX RTA: X-ray test according to ASME V Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P6: Certificate of Marking Transfer and Raw Material Certificates P6: Certificate of Marking Transfer and Raw Material Certificates P7: P3: Quality Inspection of wetted parts P7: Dye penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX | P13 | <ul> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> <li>PT: Dye penetrant test according to DIN EN ISO 3452-1</li> <li>PM: Positive Material Identification of wetted parts</li> <li>P8: Hydrostatic Pressure Test Certificate</li> </ul> | | PTA: Dye penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX RTA: X-ray test according to ASME V Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P8: Hydrostatic Pressure Test Certificate PTA: Dye penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX RTA: X-ray test according to ASME V Combination of: P3: Quality Inspection Certificate P6: Certificate of Marking Transfer and Raw Material Certificates P6: Certificate of Marking Transfer and Raw Material Certificates P73: P74: Dye penetrant test of flange welding according to ASME V WPA: Welding procedures and Certificates according to ASME IX | P14 | <ul> <li>PM: Positive Material Identification of wetted parts</li> <li>P8: Hydrostatic Pressure Test Certificate</li> </ul> | | <ul> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> <li>P8: Hydrostatic Pressure Test Certificate</li> <li>PTA: Dye penetrant test of flange welding according to ASME V</li> <li>WPA: Welding procedures and Certificates according to ASME IX</li> <li>RTA: X-ray test according to ASME V</li> <li>Combination of: <ul> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> </ul> </li> <li>PM: Positive Material Identification of wetted parts</li> <li>PTA: Dye penetrant test of flange welding according to ASME V</li> <li>WPA: Welding procedures and Certificates according to ASME IX</li> </ul> | P20 | <ul> <li>PTA: Dye penetrant test of flange welding according to ASME V</li> <li>WPA: Welding procedures and Certificates according to ASME IX</li> </ul> | | <ul> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> <li>PM: Positive Material Identification of wetted parts</li> <li>PTA: Dye penetrant test of flange welding according to ASME V</li> <li>WPA: Welding procedures and Certificates according to ASME IX</li> </ul> | P21 | <ul> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> <li>P8: Hydrostatic Pressure Test Certificate</li> <li>PTA: Dye penetrant test of flange welding according to ASME V</li> <li>WPA: Welding procedures and Certificates according to ASME IX</li> </ul> | | | P22 | <ul> <li>P3: Quality Inspection Certificate</li> <li>P6: Certificate of Marking Transfer and Raw Material Certificates</li> <li>PM: Positive Material Identification of wetted parts</li> <li>PTA: Dye penetrant test of flange welding according to ASME V</li> <li>WPA: Welding procedures and Certificates according to ASME IX</li> </ul> | ASME B31.3 compliance | Options | Specification | |---------|--------------------------------------------| | P15 | ASME B31.3 compliance NORMAL FLUID SERVICE | ### 10.6.8 Country-specific delivery | Options | Specification | | | |------------------|-----------------------------------------------------------------------------------------|--|--| | PJ | Delivery to Japan incl. SI units pre-setting and Quality Inspection Certificate (EN/JP) | | | | CN | Delivery to China including China RoHS mark | | | | KC | Delivery to Korea including KC mark | | | | VE | Delivery to EAEU area including EAC mark | | | | VB | Delivery to EAEU area including EAC mark and Belarus Pattern Approval mark | | | | VR <sup>1)</sup> | Delivery to EAEU area including EAC mark and Russia Pattern Approval mark | | | <sup>&</sup>lt;sup>1)</sup> In case of combination with option TC the Dry Verification is available for the Russian Pattern Approval, which allows to check the continuation of the accuracy of the Rotamass. ### 10.6.9 Country-specific application | Options | Specification | | |---------|------------------------------------------------------------|--| | Q11 | PESO approval delivery | | | QR | Primary calibration valid in Russia, including certificate | | ### 10.6.10 Rupture disc In the event of a measuring tube break, complete release of process pressure via the rupture disc cannot be ensured in every case. The rupture disc's bursting pressure is 20 bar (291 psi), the nominal diameter 8 mm (0.315 inch). If a larger nominal diameter is required, the Yokogawa sales organization may be contacted with regard to customized designs. | Options | Specification | |---------|---------------| | RD | Rupture disc | #### 10.6.11 Tube Health Check By way of the Tube Health Check, the transmitter can determine whether the tube properties were altered due to corrosion or deposits and whether they could impact accuracy as a result. | Options | Specification | |---------|-------------------| | TC | Tube Health Check | ## 10.6.12 Transmitter housing rotated 180° | Options | Specification | |---------|-----------------------------------------------| | RB | Alignment of transmitter housing rotated 180° | # 10.6.13 Measurement of heat quantity | Options | Specification | |---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | CGC | Measurement of the total transported energy content of a fuel in connection with a sensor for determining the fuel's calorific value (e.g. a gas chromatograph, not included in scope of delivery). | | | This option is available only together with model code position 13 JH to JN. | For details about the device function refer to *Measurement of heat quantity* [> 66]. **Intense** Ordering information Options ### 10.6.14 Marine approval By ordering options MC2 and MC3 the device will carry a type approval mark by DNV GL. Ordering of fire retardant cable (Y\_\_\_) is mandatory with this option. In case of thermal oil applications option RT or RTA is mandatory. Please note that DNV GL has additional requirements regarding the process conditions as reproduced in the table below. The complete requirements can be found in the classification society's rules concerning the respective use case. Marine approval is not available for all device variants, for details see exclusions in *Overview options* [> 90]. | Options | Specification | | |---------|----------------------------------------------------|--| | MC2 | Marine approval according to DNV GL piping class 2 | | | MC3 | Marine approval according to DNV GL piping class 3 | | | | Option | | | | | |------------------------------------------|-------------|----------------------|--------------|----------------------|--| | | MC2 | | MC3 | | | | Dining avetem for | Class II 1) | | Class III 1) | Class III 1) | | | Piping system for | p in bar | T <sub>D</sub> in °C | p in bar | T <sub>D</sub> in °C | | | Steam | ≤ 16 | ≤ 300 | ≤ 7 | ≤ 170 | | | Thermal oil | ≤ 16 | ≤ 300 | ≤ 7 | ≤ 150 | | | Fuel oil, lubricating oil, flammable oil | ≤ 16 | ≤ 150 | ≤ 7 | ≤ 60 | | | Other media <sup>2)</sup> | ≤ 40 | ≤ 300 | ≤ 16 | ≤ 200 | | p: Design pressure #### 10.6.15 Cable glands and blind plug For Japan Ex Approval JF5\_ following flame proof cable glands have to be ordered. | Options | Specification | |---------|---------------------------------------------------------------| | V52 | 2 cable glands, 1 blind plug for power, communication and I/O | | V53 | 3 cable glands for power, communication and I/O | #### 10.6.16 Customer-specific special product manufacture | Options | Specification | |---------|-------------------------------------------------------------------| | Z | Deviations from the specifications in this document are possible. | T<sub>D</sub>: Design temperature <sup>1)</sup> both specified conditions (p and T<sub>D</sub>) shall be met <sup>&</sup>lt;sup>2)</sup> Cargo oil pipes on oil carriers and open ended pipes (drain overflows, vents, boiler escape pipes etc.) independently of the pressure and temperature, are pertaining to class III. ## 10.7 Ordering Instructions Specify the following information when ordering a product: - Model code - Fluid name - Language of the quick reference instruction manual paper version: - English - French - German - Japanese - Chinese - Korean - Russian - Display language and language pack (display only present for value 1 on position 14 of the model code): | pack 1 | pack 2 | pack 3 | |-----------------------|--------------------|-----------------------| | EN-Pack1 - English | EN-Pack2 - English | EN-Pack3 - English | | DE-Pack1 - German | DE-Pack2 - German | DE-Pack3 - German | | FR-Pack1 - French | RU-Pack2 - Russian | FR-Pack3 - French | | PT-Pack1 - Portuguese | PL-Pack2 - Polish | PT-Pack3 - Portuguese | | IT-Pack1 - Italian | KZ-Pack2 - Kazakh | IT-Pack3 - Italian | | ES-Pack1 - Spanish | | ES-Pack3 - Spanish | | JA-Pack1 - Japanese | | CN-Pack3 - Chinese | - Unit notation on the display (display only present for value 1 on position 14 of the model code): - Metric units - Imperial units US - Imperial units GB - Russia specific units (only available with language pack 2) - Japan specific units (only available with language pack 1) Orientation of the display (display only present for value 1 on position 14 of the model code): | | Orientation 1 | Orientation 2 | Orientation 3 | |------------------|--------------------------------------|------------------------------------|-----------------------| | | Horizontal installation - tubes down | Horizontal installation - tubes up | Vertical installation | | Integral<br>type | | | | | Remote type | | VONCOLABIO. | | - In the above the figure, the case of the Prime sensor is shown. The design of sensor depend on the each series. - The parameter "Installation Orientation" in transmitter must be set by the customer according to the installation direction of the sensor. - Tag No. engraved on the nameplate and mentioned on the calibration certificate (option BG, up to 16 characters length) - Software Tag No.: short and long (short tag no. mentioned also on the calibration certificate): | Parameter | Value | |------------------------------------------------------------------------|---------------------------------------------------| | HART Tag No. (short): up to 8 characters length (Capital letters only) | Default value has 8 space characters | | HART Tag No. (long): up to 32 characters length | Default value has 32 space characters | | PROFIBUS PA NODE ADDRESS (HEX): up to 4 characters length | Default value '0x7E' unless otherwise specified | | PROFIBUS PA SOFTWARE TAG: up to 32 characters length | Default value 'FT2001' unless otherwise specified | #### **TRADEMARKS** | HART: | registered trademark of FieldComm Group, Inc., US | |------------|-------------------------------------------------------------------------| | Modbus: | registered trademark of SCHNEIDER ELECTRIC USA, INC. | | PROFIBUS: | registered trademark of PROFIBUS Nutzerorganisation e.V., Karlsruhe, DE | | ROTAMASS: | registered trademark of Rota Yokogawa GmbH & Co. KG, DE | | FieldMate: | registered trademark of YOKOGAWA ELECTRIC CORPORATION | All other company and product names mentioned in this document are trade names, trademarks or registered trademarks of their respective companies. In this document, trademarks or registered trademarks are not marked with $^{\text{TM}}$ or $^{\text{R}}$ . #### All rights reserved. Copyright © 2019-07-01 # YOKOGAWA ELECTRIC CORPORATION Headquarters 2-9-32, Nakacho, Musashino-shi, Tokyo, 180-8750 JAPAN Phone : 81-422-52-5555 Branch Sales Offices Osaka, Nagoya, Hiroshima, Kurashiki, Fukuoka, Kitakyusyu #### YOKOGAWA CORPORATION OF AMERICA Head Office 12530 West Airport Blvd, Sugar Land, Texas 77478, USA Phone : 1-281-340-3800 Fax : 1-281-340-3838 Georgia Office 2 Dart Road, Newnan, Georgia 30265, USA Phone: 1-800-888-6400/ 1-770-253-7000 Fax : 1-770-254-0928 #### YOKOGAWA AMERICA DO SUL LTDA. Praca Acapulco, 31 - Santo Amaro, Sáo Paulo/SP, BRAZIL, CEP-04675-190 Phone: 55-11-5681-2400 Fax: 55-11-5681-4434 #### YOKOGAWA EUROPE B. V. Euroweg 2, 3825 HD Amersfoort, THE NETHERLANDS Phone: 31-88-4641000 Fax: 31-88-4641111 #### YOKOGAWA ELECTRIC CIS LTD. Grokholskiy per 13 Building 2, 4th Floor 129090, Moscow, RUSSIA Phone : 7-495-737-7868 Fax : 7-495-737-7869 #### YOKOGAWA CHINA CO., LTD. 3F Tower D, No.568 West Tianshan RD. Shanghai CHINA, 200335 Phone : 86-21-62396262 Fax : 86-21-62387866 #### YOKOGAWA ELECTRIC KOREA CO., LTD. (Yokogawa B/D, Yangpyeong-dong 4-Ga), 21, Seonyu-ro 45-gil, Yeongdeungpo-gu, Seoul, 150-866, KOREA Phone: 8:22-2628-6000 Fax: 82-2-2628-6400 #### YOKOGAWA ENGINEERING ASIA PTE. LTD. 5 Bedok South Road, Singapore 469270, SINGAPORE Phone: 65-6241-9933 Fax: 65-6241-2606 #### YOKOGAWA INDIA LTD. Plot No.96, Electronic City Complex, Hosur Road, Bangalore - 560 100, INDIA Phone: 91-80-4158-6000 Fax: 91-80-2852-1442 #### YOKOGAWA AUSTRALIA PTY. LTD. Tower A, 112-118 Talavera Road, Macquarie Park NSW 2113, AUSTRALIA Phone: 61-2-8870-1100 Fax: 61-2-8870-1111 #### YOKOGAWA MIDDLE EAST & AFRICA B.S.C.(C) P.O. Box 10070, Manama, Building 577, Road 2516, Busaiteen 225, Muharraq, Kingdom of BAHRAIN Phone: 973-17358100 Fax: 973-17336100